scholarly journals Numerical aspects of giant impact simulations

2017 ◽  
Vol 467 (4) ◽  
pp. 4252-4263 ◽  
Author(s):  
Christian Reinhardt ◽  
Joachim Stadel
Author(s):  
Natsuki Hosono ◽  
Masaki Iwasawa ◽  
Ataru Tanikawa ◽  
Keigo Nitadori ◽  
Takayuki Muranushi ◽  
...  

Icarus ◽  
2016 ◽  
Vol 271 ◽  
pp. 131-157 ◽  
Author(s):  
Natsuki Hosono ◽  
Takayuki R. Saitoh ◽  
Junichiro Makino ◽  
Hidenori Genda ◽  
Shigeru Ida

2019 ◽  
Vol 870 (2) ◽  
pp. 127 ◽  
Author(s):  
Hongping Deng ◽  
Christian Reinhardt ◽  
Federico Benitez ◽  
Lucio Mayer ◽  
Joachim Stadel ◽  
...  

2016 ◽  
Vol 822 (1) ◽  
pp. 54 ◽  
Author(s):  
Rebekah I. Dawson ◽  
Eve J. Lee ◽  
Eugene Chiang

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Sune G. Nielsen ◽  
David V. Bekaert ◽  
Maureen Auro

AbstractIsotopic measurements of lunar and terrestrial rocks have revealed that, unlike any other body in the solar system, the Moon is indistinguishable from the Earth for nearly every isotopic system. This observation, however, contradicts predictions by the standard model for the origin of the Moon, the canonical giant impact. Here we show that the vanadium isotopic composition of the Moon is offset from that of the bulk silicate Earth by 0.18 ± 0.04 parts per thousand towards the chondritic value. This offset most likely results from isotope fractionation on proto-Earth during the main stage of terrestrial core formation (pre-giant impact), followed by a canonical giant impact where ~80% of the Moon originates from the impactor of chondritic composition. Our data refute the possibility of post-giant impact equilibration between the Earth and Moon, and implies that the impactor and proto-Earth mainly accreted from a common isotopic reservoir in the inner solar system.


2021 ◽  
Author(s):  
Cédric Gillmann ◽  
Gregor Golabek ◽  
Sean Raymond ◽  
Paul Tackley ◽  
Maria Schonbachler ◽  
...  

<p>Terrestrial planets in the Solar system generally lack surface liquid water. Earth is at odd with this observation and with the idea of the giant Moon-forming impact that should have vaporized any pre-existing water, leaving behind a dry Earth. Given the evidence available, this means that either water was brought back later or the giant impact could not vaporize all the water.</p><p>We have looked at Venus for answers. Indeed, it is an example of an active planet that may have followed a radically different evolutionary pathway despite the similar mechanisms at work and probably comparable initial conditions. However, due to the lack of present-day plate tectonics, volatile recycling, and any surface liquid oceans, the evolution of Venus has likely been more straightforward than that of the Earth, making it easier to understand and model over its long term evolution.</p><p>Here, we investigate the long-term evolution of Venus using self-consistent numerical models of global thermochemical mantle convection coupled with both an atmospheric evolution model and a late accretion N-body delivery model. We test implications of wet and dry late accretion compositions, using present-day Venus atmosphere measurements. Atmospheric losses are only able to remove a limited amount of water over the history of the planet. We show that late accretion of wet material exceeds this sink. CO<sub>2</sub> and N<sub>2</sub> contributions serve as additional constraints.</p><p>Water-rich asteroids colliding with Venus and releasing their water as vapor cannot explain the composition of Venus atmosphere as we measure it today. It means that the asteroidal material that came to Venus, and thus to Earth, after the giant impact must have been dry (enstatite chondrites), therefore preventing the replenishment of the Earth in water. Because water can obviously be found on our planet today, it means that the water we are now enjoying on Earth has been there since its formation, likely buried deep in the Earth so it could survive the giant impact. This in turn suggests that suggests that planets likely formed with their near-full budget in water, and slowly lost it with time.</p>


2006 ◽  
Vol 134 ◽  
pp. 331-337 ◽  
Author(s):  
C. E. Anderson ◽  
I. S. Chocron ◽  
A. E. Nicholls

Sign in / Sign up

Export Citation Format

Share Document