taylor impact
Recently Published Documents


TOTAL DOCUMENTS

124
(FIVE YEARS 19)

H-INDEX

16
(FIVE YEARS 1)

Author(s):  
David Rivera ◽  
Jason Bernstein ◽  
Kathleen Schmidt ◽  
Amanda Muyskens ◽  
Matthew Nelms ◽  
...  

2021 ◽  
Vol 8 ◽  
Author(s):  
Li Juncheng ◽  
Chen Gang ◽  
Lu Yonggang ◽  
Huang Fenglei

Taylor impact test is characterized by high impact energy, low cost, and good repeatability, giving it the technical foundation and development potential for application in high-g loading. In this paper, the feasibility of performing high-g load impact testing to a missile-borne recorder by conducting Taylor impact test was studied by combining simulation analyses with experimental verification. Acccording to the actual dimensions of the missile-borne recorder, an experimental piece was designed based on the Taylor impact principle. The impact loading characteristics of the missile-borne recorder were then simulated and analyzed at different impact velocities. In addition, the peak acceleration function and the pulse duration function of the load were fitted to guide the experimental design. A Taylor-Hopkinson impact experiment was also conducted to measure the impact load that was actually experienced by the missile-borne recorder and the results were compared with the results of strain measurements on the Hopkinson incident bar. The results showed that the peak value of impact load, the pulse duration and the waveform of the actual experimental results were in good agreement with the results predicted by the simulations. Additionally, the strain data measured on the incident bar could be used to verify or replace the acceleration testing of the specimen to simplify the experimental process required. Based on the impact velocity, high-g loading impact was achieved with peak values in the 7,000–30,000 g range and durations of 1.3–1 ms, and the waveform generated was a sawtooth wave. The research results provide a new approach for high amplitude and long pulse duration impact loading to large-mass components, and broaden the application field of Taylor impact test.


Meccanica ◽  
2021 ◽  
Author(s):  
Eligiusz Postek ◽  
Zdzisław Nowak ◽  
Ryszard B. Pęcherski

AbstractThe subject of the study is the deformation of the oxygen-free high conductivity copper. The copper sample is given in the form of a foam. The sample undergoes an impact into an elastic wall. The strain rate hardening effect is investigated. The numerical model of the open-cell foam skeleton is prepared in the framework of the peridynamics method. The dynamic process of compression with different impact velocities is simulated. It has been found that the strain rate hardening effect is essential for the load-carrying capacity of the material under study. Taylor impact test of solid cylinder analysis precedes the analysis of the metallic foam.


Metals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 713
Author(s):  
Jun-Cheng Li ◽  
Gang Chen ◽  
Feng-Lei Huang ◽  
Yong-Gang Lu

This study focused on the impact load produced by a projectile and its potential application in the Taylor impact test. Taylor impact tests were designed and carried out for projectiles with four types of nose shapes, and the impact deformation characteristics and variation of the impact load as a function of the nose shape and impact velocity were studied. The overall high g loading experienced by the projectile body during the impact was discussed, and based on classical Taylor impact theory, impact analysis models for the various nose-shape projectiles were established and the causes of the different impact load pulse shapes were analyzed. This study reveals that the nose shape has a significant effect on the impact load waveform and pulse duration characteristics, while the impact velocity primarily affects the peak value of the impact load. Thus, the loading of specific impact environments could be regulated by the projectile nose shape design and impact velocity control, and the impact load could be simulated. Research results support the assumption that the Taylor impact test can be applied to high g loading test.


2021 ◽  
Author(s):  
François Ducobu ◽  
Anthonin Demarbaix ◽  
Olivier Pantalé

When modelling a cutting operation, the constitutive model of the machined material is one of the key parameters to obtain accurate and realistic results. Up to now, the Johnson-Cook model is still the most used, even if an increasing number of models, such as the Hyperbolic TANgent (TANH) model, were introduced last years to overcome its limitations and come closer to the actual material behaviour. Experimental tests on dedicated equipment are usually required to identify the parameters of the constitutive models. This paper introduces the Coupled Eulerian-Lagrangian (CEL) formalism to model in 3D the Taylor impact test, one of the common tests to perform that parameters identification. Indeed, one identification way involves modelling the test to determine the constitutive model parameters by comparing the experimental and the numerical samples geometries. The developed CEL model is validated against a Lagrangian reference model for a steel alloy and the Johnson-Cook constitutive model. The main goal of using the CEL method is to get rid of the elements distortion due to the high strains and strain rates during the test. Mesh dependence of the results is highlighted and a recommendation is provided on the mesh to adopt for future work. The CEL model of the 3D Taylor impact test is then extended to the use of the TANH model. The results are finally compared with that of the Johnson-Cook constitutive model.


Materials ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 258
Author(s):  
Hengfu Li ◽  
Zhenyu Yu ◽  
Peng Rong ◽  
Yi Wu ◽  
Xulong Hui ◽  
...  

The high strain rate deformation behavior and microstructure evolution of in situ TiB2 particle reinforced Al-Zn-Mg-Cu composite were investigated by means of Taylor impact. The dynamic tests were performed at three different impact velocities. Under three different velocities, no obvious shear failure occurred in the composite, indicating a good impact resistance. Compared to the quasi-static compression test, the dynamic yield strength increased obviously with the rise of velocity, even more than 1 GPa. The dislocation multiplication, phonon drag effect and ceramic reinforcement increased the flow stress of composite. Fine, equiaxed grain structure developed after impact, resulting from grain fragmentation or dynamic recrystallization. Finite element simulation of Taylor impact was qualitatively in agreement with the experiments, which was useful to elucidate the formation of equiaxed grain structure.


2021 ◽  
Vol 250 ◽  
pp. 02008
Author(s):  
Evaristo Santamaria Ferraro ◽  
Marina Seidl ◽  
Tom De Vuyst

This study is the first part of a project that aims to assess and model impact-induced energy release (IIER). The present part of the work investigates the failure mode of brittle commercial pyrophoric alloy samples during Taylor impact tests. A series of ferrocerium specimens were shot against tungsten carbide anvils, with velocities ranging between 60 and 140 m/s. A Total Lagrangian SPH model was employed to simulate the deformation and impact-induced fragmentation of the cylinders using LSDYNA®. The modified Johnson-Cook constitutive model was applied in combination with the Cockcroft-Latham fracture criterion. The plastic deformation process, shear cracking, and fragmentation are well reproduced in the numerical results.


Sign in / Sign up

Export Citation Format

Share Document