scholarly journals Simulating an isolated dwarf galaxy with multichannel feedback and chemical yields from individual stars

2018 ◽  
Vol 482 (1) ◽  
pp. 1304-1329 ◽  
Author(s):  
Andrew Emerick ◽  
Greg L Bryan ◽  
Mordecai-Mark Mac Low
2002 ◽  
Vol 185 ◽  
pp. 142-143
Author(s):  
E. Rodríguez ◽  
M.J. López-González

AbstractWe have compiled an extensive and up-dated list of SX Phe-type pulsators in globular clusters. In addition, SX Phe variables discovered in the Carina dwarf galaxy and other ones probably belonging to the Sagittarius dwarf galaxy are included. This catalogue is intended to be an up-dated list of all the SX Phe stars, in globular clusters and galaxies, known until now. The stars and their most significant parameters are listed together with references to studies of individual stars and notes for a number of variables. In addition, the references on the discovery for each variable and sources for photometry are also listed. Some relevant distributions are also analysed. The analysis of metal abundances and mean periods shows that both parameters are correlated in the sense that the periods of the variables are longer as the metallicity of the stellar system is higher.


Author(s):  
Thales A Gutcke ◽  
Rüdiger Pakmor ◽  
Thorsten Naab ◽  
Volker Springel

Abstract We introduce the LYRA project, a new high resolution galaxy formation model built within the framework of the cosmological hydro-dynamical moving mesh code arepo. The model resolves the multi-phase interstellar medium down to 10 K. It forms individual stars sampled from the initial mass function (IMF), and tracks their lifetimes and death pathways individually. Single supernova (SN) blast waves with variable energy are followed within the hydrodynamic calculation to interact with the surrounding interstellar medium (ISM). In this paper, we present the methods and apply the model to a 1010 M⊙ isolated halo. We demonstrate that the majority of supernovae are Sedov-resolved at our fiducial gas mass resolution of 4  M⊙. We show that our SN feedback prescription self-consistently produces a hot phase within the ISM that drives significant outflows, reduces the gas density and suppresses star formation. Clustered SN play a major role in enhancing the effectiveness of feedback, because the majority of explosions occur in low density material. Accounting for variable SN energy allows the feedback to respond directly to stellar evolution. We show that the ISM is sensitive to the spatially distributed energy deposition. It strongly affects the outflow behaviour, reducing the mass loading by a factor of 2 − 3, thus allowing the galaxy to retain a higher fraction of mass and metals. LYRA makes it possible to use a comprehensive multi-physics ISM model directly in cosmological (zoom) simulations of dwarf and higher mass galaxies.


1962 ◽  
Vol 11 (02) ◽  
pp. 137-143
Author(s):  
M. Schwarzschild

It is perhaps one of the most important characteristics of the past decade in astronomy that the evolution of some major classes of astronomical objects has become accessible to detailed research. The theory of the evolution of individual stars has developed into a substantial body of quantitative investigations. The evolution of galaxies, particularly of our own, has clearly become a subject for serious research. Even the history of the solar system, this close-by intriguing puzzle, may soon make the transition from being a subject of speculation to being a subject of detailed study in view of the fast flow of new data obtained with new techniques, including space-craft.


1999 ◽  
Vol 118 (2) ◽  
pp. 862-882 ◽  
Author(s):  
D. Martínez-Delgado ◽  
C. Gallart ◽  
A. Aparicio

1999 ◽  
Vol 118 (5) ◽  
pp. 2245-2261 ◽  
Author(s):  
Carme Gallart ◽  
Wendy L. Freedman ◽  
Antonio Aparicio ◽  
Giampaolo Bertelli ◽  
Cesare Chiosi

1998 ◽  
Vol 508 (1) ◽  
pp. 248-261 ◽  
Author(s):  
José M. Vílchez ◽  
Jorge Iglesias‐Páramo

2004 ◽  
Vol 606 (2) ◽  
pp. 853-861 ◽  
Author(s):  
Leslie K. Hunt ◽  
Kristy K. Dyer ◽  
Trinh X. Thuan ◽  
James S. Ulvestad

1998 ◽  
Vol 11 (1) ◽  
pp. 581-582
Author(s):  
L. Lindegren ◽  
M.A.C. Perryman

The Hipparcos mission demonstrated the efficiency of space astrometry (in terms of number of objects, accuracy, and uniformity of results) and the fact that a relatively small instrument can have a very large scientific potential in the area of astrometry. However, Hipparcos could probe less than 0.1 per cent of the volume of the Galaxy by direct distance measurements. Using a larger instrument and more efficient detectors, it is now technically feasible to increase the efficiency of a space astrometry mission by several orders of magnitude, thus encompassing a large part of the Galaxy within its horizon for accurate determination of parallaxes and transverse velocities. Such a mission will have immediate and profound impact in the areas of the physics and evolution of individual stars and of the Galaxy as a whole.


2020 ◽  
Vol 499 (2) ◽  
pp. 2648-2661
Author(s):  
Aaron A Dutton ◽  
Tobias Buck ◽  
Andrea V Macciò ◽  
Keri L Dixon ◽  
Marvin Blank ◽  
...  

ABSTRACT We use cosmological hydrodynamical galaxy formation simulations from the NIHAO project to investigate the response of cold dark matter (CDM) haloes to baryonic processes. Previous work has shown that the halo response is primarily a function of the ratio between galaxy stellar mass and total virial mass, and the density threshold above which gas is eligible to form stars, n[cm−3]. At low n all simulations in the literature agree that dwarf galaxy haloes are cuspy, but at high n ≳ 100 there is no consensus. We trace halo contraction in dwarf galaxies with n ≳ 100 reported in some previous simulations to insufficient spatial resolution. Provided the adopted star formation threshold is appropriate for the resolution of the simulation, we show that the halo response is remarkably stable for n ≳ 5, up to the highest star formation threshold that we test, n = 500. This free parameter can be calibrated using the observed clustering of young stars. Simulations with low thresholds n ≤ 1 predict clustering that is too weak, while simulations with high star formation thresholds n ≳ 5, are consistent with the observed clustering. Finally, we test the CDM predictions against the circular velocities of nearby dwarf galaxies. Low thresholds predict velocities that are too high, while simulations with n ∼ 10 provide a good match to the observations. We thus conclude that the CDM model provides a good description of the structure of galaxies on kpc scales provided the effects of baryons are properly captured.


Author(s):  
Hyungjin Kim

Abstract Primordial black holes are a viable dark matter candidate. They decay via Hawking evaporation. Energetic particles from the Hawking radiation interact with interstellar gas, depositing their energy as heat and ionization. For a sufficiently high Hawking temperature, fast electrons produced by black holes deposit a substantial fraction of energy as heat through the Coulomb interaction. Using the dwarf galaxy Leo T, we place an upper bound on the fraction of primordial black hole dark matter. For M < 5 × 10−17M⊙, our bound is competitive with or stronger than other bounds.


Sign in / Sign up

Export Citation Format

Share Document