scholarly journals Erratum: Supernova Remnants in the Local Group – I. A model for the radio luminosity function and visibility times of supernova remnants

2019 ◽  
Vol 487 (4) ◽  
pp. 5813-5813 ◽  
Author(s):  
Sumit K Sarbadhicary ◽  
Carles Badenes ◽  
Laura Chomiuk ◽  
Damiano Caprioli ◽  
Daniel Huizenga
2016 ◽  
Vol 464 (2) ◽  
pp. 2326-2340 ◽  
Author(s):  
Sumit K. Sarbadhicary ◽  
Carles Badenes ◽  
Laura Chomiuk ◽  
Damiano Caprioli ◽  
Daniel Huizenga

Abstract Supernova remnants (SNRs) in Local Group galaxies offer unique insights into the origin of different types of supernovae (SNe). In order to take full advantage of these insights, one must understand the intrinsic and environmental diversity of SNRs in the context of their host galaxies. We introduce a semi-analytic model that reproduces the statistical properties of a radio continuum-selected SNR population, taking into account the detection limits of radio surveys, the range of SN kinetic energies, the measured interstellar medium (ISM) and stellar mass distribution in the host galaxy from multi-wavelength images and the current understanding of electron acceleration and magnetic field amplification in SNR shocks from first-principle kinetic simulations. Applying our model to the SNR population in M33, we reproduce the SNR radio luminosity function with a median SN rate of ∼3.1 × 10−3 per year and an electron acceleration efficiency, εe ∼ 4.2 × 10−3. We predict that the radio visibility times of ∼70 per cent of M33 SNRs will be determined by their Sedov–Taylor lifetimes, and correlated with the measured ISM column density, NH ($t_{\rm {vis}} \propto N_{\rm H}^{-a}$, with a ∼ 0.33) while the remaining will have visibility times determined by the detection limit of the radio survey. These observational constraints on the visibility time of SNRs will allow us to use SNR catalogues as ‘SN surveys’ to calculate SN rates and delay-time distributions in the Local Group.


2018 ◽  
Vol 239 (2) ◽  
pp. 33 ◽  
Author(s):  
Zunli Yuan ◽  
Jiancheng Wang ◽  
D. M. Worrall ◽  
Bin-Bin Zhang ◽  
Jirong Mao

2020 ◽  
Vol 492 (4) ◽  
pp. 5297-5312 ◽  
Author(s):  
Eliab Malefahlo ◽  
Mario G Santos ◽  
Matt J Jarvis ◽  
Sarah V White ◽  
Jonathan T L Zwart

ABSTRACT We present the radio luminosity function (RLF) of optically selected quasars below 1 mJy, constructed by applying a Bayesian-fitting stacking technique to objects well below the nominal radio flux density limit. We test the technique using simulated data, confirming that we can reconstruct the RLF over three orders of magnitude below the typical 5σ detection threshold. We apply our method to 1.4-GHz flux densities from the Faint Images of the Radio Sky at Twenty-Centimeters (FIRST) survey, extracted at the positions of optical quasars from the Sloan Digital Sky Survey over seven redshift bins up to z = 2.15, and measure the RLF down to two orders of magnitude below the FIRST detection threshold. In the lowest redshift bin (0.2 < z < 0.45), we find that our measured RLF agrees well with deeper data from the literature. The RLF for the radio-loud quasars flattens below $\log _{10}[L_{1.4}/{\rm W\, Hz}^{-1}] \approx 25.5$ and becomes steeper again below $\log _{10}[L_{1.4}/{\rm W\, Hz}^{-1}] \approx 24.8$, where radio-quiet quasars start to emerge. The radio luminosity where radio-quiet quasars emerge coincides with the luminosity where star-forming galaxies are expected to start dominating the radio source counts. This implies that there could be a significant contribution from star formation in the host galaxies, but additional data are required to investigate this further. The higher redshift bins show a similar behaviour to the lowest z bin, implying that the same physical process may be responsible.


2004 ◽  
Vol 194 ◽  
pp. 3-6
Author(s):  
Andrea H. Prestwich

AbstractChandra and XMM-Newton are revolutionizing our understanding of compact binaries in external galaxies, allowing us to study sources in detail in Local Group Galaxies and study populations in more distant systems. In M31 the X-ray luminosity function depends on the local stellar population in the sense that areas with active star formation have more high luminosity sources, and a higher overall source density (Kong. Di Stefano. Garcia, & Greiner 2003). This result is also true in galaxies outside the Local Group; starburst galaxies have flatter X-ray luminosity functions than do spiral galaxies which are in turn flatter than elliptical galaxies. These observational results suggest that the high end of the luminosity function in star forming regions is dominated by short-lived high mass X-ray binaries.In Chandra Cycle 2 we started a Large Project to survey a sample of 11 nearby (< 10Mpc) face-on spiral galaxies. We find that sources can be approximately classified on the basis of their X-ray color into low mass X-ray binaries, high mass X-ray binaries and supersoft sources. There is an especially interesting class of source that has X-ray colors softer (“redder”) than a typical low mass X-ray binary source, but not so extreme as supersoft sources. Most of these are probably X-ray bright supernova remnants, but some may be a new type of black hole accretor. Finally, when we construct a luminosity function of sources selecting only sources with low mass X-ray binary colors (removing soft sources) we find that there is a dip or break probably associated with the Eddington luminosity for a neutron star.


Nature ◽  
1988 ◽  
Vol 333 (6168) ◽  
pp. 49-51 ◽  
Author(s):  
Gopal-Krishna ◽  
Paul J. Wiita

Sign in / Sign up

Export Citation Format

Share Document