scholarly journals Bolometric correction factors for active galactic nuclei

2019 ◽  
Vol 488 (4) ◽  
pp. 5185-5191 ◽  
Author(s):  
Hagai Netzer

ABSTRACT The bolometric luminosity of active galactic nuclei (AGNs) is difficult to determine, and various approximations have been used to calibrate it against different observed properties. Here, I combine theoretical calculations of optically thick, geometrically thin accretion discs, and observed X-ray properties of AGN, to provide new bolometric correction factors (kBOL) over a large range of black hole (BH) mass, accretion rate, and spin. This is particularly important in cases where the mass accretion rate cannot be determined from the observed spectral energy distribution, and in cases where luminosity-independent correction factors have been used. Simple power-law approximations of kBOL are provided for L(5100 Å), L(3000 Å), L(1400 Å), L(2–10 keV), and L(narrow Hβ). In all cases, the uncertainties are large mostly due to the unknown BH spin. Prior knowledge of the BH mass reduces the uncertainty considerably.

2019 ◽  
Vol 625 ◽  
pp. A49 ◽  
Author(s):  
M. Koutoulaki ◽  
S. Facchini ◽  
C. F. Manara ◽  
A. Natta ◽  
R. Garcia Lopez ◽  
...  

Context. RW Aur A is a classical T Tauri star that has suddenly undergone three major dimming events since 2010. The reason for these dimming events is still not clear. Aims. We aim to understand the dimming properties, examine accretion variability, and derive the physical properties of the inner disc traced by the CO ro-vibrational emission at near-infrared wavelengths (2.3 μm). Methods. We compared two epochs of X-shooter observations, during and after the dimming. We modelled the rarely detected CO bandhead emission in both epochs to examine whether the inner disc properties had changed. The spectral energy distribution was used to derive the extinction properties of the dimmed spectrum and compare the infrared excess between the two epochs. Lines tracing accretion were used to derive the mass accretion rate in both states. Results. The CO originates from a region with physical properties of T = 3000 K, NCO = 1 × 1021 cm−2 and vk sin i = 113 km s−1. The extinction properties of the dimming layer were derived with the effective optical depth ranging from τeff ~2.5−1.5 from the UV to the near-IR. The inferred mass accretion rate Ṁacc is ~1.5 × 10−8 M⊙ yr−1 and ~2 × 10−8 M⊙ yr−1 after and during the dimming respectively. By fitting the spectral energy distribution, additional emission is observed in the infrared during the dimming event from dust grains with temperatures of 500–700 K. Conclusions. The physical conditions traced by the CO are similar for both epochs, indicating that the inner gaseous disc properties do not change during the dimming events. The extinction curve is flatter than that of the interstellar medium, and large grains of a few hundred microns are thus required. When we correct for the observed extinction, the mass accretion rate is constant in the two epochs, suggesting that the accretion is stable and therefore does not cause the dimming. The additional hot emission in the near-IR is located at about 0.5 au from the star and is not consistent with an occulting body located in the outer regions of the disc. The dimming events could be due to a dust-laden wind, a severe puffing-up of the inner rim, or a perturbation caused by the recent star-disc encounter.


2020 ◽  
Vol 494 (2) ◽  
pp. 2538-2560 ◽  
Author(s):  
J M M Neustadt ◽  
T W-S Holoien ◽  
C S Kochanek ◽  
K Auchettl ◽  
J S Brown ◽  
...  

ABSTRACT We present the discovery of ASASSN-18jd (AT 2018bcb), a luminous optical/ultraviolet(UV)/X-ray transient located in the nucleus of the galaxy 2MASX J22434289–1659083 at z = 0.1192. Over the year after discovery, Swift UltraViolet and Optical Telescope (UVOT) photometry shows the UV spectral energy distribution of the transient to be well modelled by a slowly shrinking blackbody with temperature $T \sim 2.5 \times 10^{4} \, {\rm K}$, a maximum observed luminosity of $L_{\rm max} = 4.5^{+0.6}_{-0.3}\times 10^{44} \, {\rm erg \,s}^{-1}$, and a radiated energy of $E = 9.6^{+1.1}_{-0.6} \times 10^{51} \, {\rm erg}$. X-ray data from Swift X-Ray Telescope (XRT) and XMM–Newton show a transient, variable X-ray flux with blackbody and power-law components that fade by nearly an order of magnitude over the following year. Optical spectra show strong, roughly constant broad Balmer emission and transient features attributable to He ii, N iii–v, O iii, and coronal Fe. While ASASSN-18jd shares similarities with tidal disruption events (TDEs), it is also similar to the newly discovered nuclear transients seen in quiescent galaxies and faint active galactic nuclei (AGNs).


2020 ◽  
Vol 494 (3) ◽  
pp. 3616-3626 ◽  
Author(s):  
Mariko Nomura ◽  
Ken Ohsuga ◽  
Chris Done

ABSTRACT Based on recent X-ray observations, ultrafast outflows from supermassive black holes are expected to have enough energy to dramatically affect their host galaxy but their launch and acceleration mechanisms are not well understood. We perform two-dimensional radiation hydrodynamics simulations of UV line-driven disc winds in order to calculate the mass-loss rates and kinetic power in these models. We develop a new iterative technique that reduces the mass accretion rate through the inner disc in response to the wind mass-loss. This makes the inner disc less UV bright, reducing the wind power compared to previous simulations which assumed a constant accretion rate with radius. The line-driven winds in our simulations are still extremely powerful, with around half the supplied mass accretion rate being ejected in the wind for black holes with mass 108–$10^{10}\, \mathrm{ M}_\odot$ accreting at L/LEdd = 0.5–0.9. Our results open up the way for estimating the growth rate of supermassive black hole and evaluating the kinetic energy ejected into the interstellar medium (active galactic nuclei feedback) based on a physical model of line-driven disc winds.


2019 ◽  
Vol 626 ◽  
pp. A130
Author(s):  
T. Tsuchikawa ◽  
H. Kaneda ◽  
S. Oyabu ◽  
T. Kokusho ◽  
K. Morihana ◽  
...  

Context. Although heavily obscured active galactic nuclei (AGNs) have been found by many observational studies, the properties of the surrounding dust are poorly understood. Using AKARI/IRC spectroscopy, we discovered a new heavily obscured AGN in LEDA 1712304 which shows a deep spectral absorption feature due to silicate dust. Aims. We study the infrared (IR) spectral properties of circumnuclear silicate dust in LEDA 1712304. Methods. We performed IR spectral fitting, considering silicate dust properties such as composition, porosity, size, and crystallinity. Spectral energy distribution fitting was also performed on the flux densities in the UV to submillimeter range to investigate the global spectral properties. Results. The best-fit model indicates 0.1 μm-sized porous amorphous olivine (Mg2xFe2−2xSiO4; x = 0.4) with 4% crystalline pyroxene. The optical depth is τsil ∼ 2.3, while the total IR luminosity and stellar mass are estimated to be LIR = (5 ± 1)×1010 L⊙ and Mstar = (2.7 ± 0.8)×109 M⊙, respectively. In such low LIR and Mstar ranges, there are few galaxies that show such a large τsil. Conclusion. The silicate dust in the AGN torus of LEDA 1712304 has properties that are notably similar to those in other AGNs overall, but slightly different in the wing shape of the absorption profile. The porosity of the silicate dust suggests dust coagulation or processing in the circumnuclear environments, while the crystallinity suggests that the silicate dust is relatively fresh.


2019 ◽  
Vol 489 (1) ◽  
pp. 1044-1053 ◽  
Author(s):  
F Bernardini ◽  
D de Martino ◽  
K Mukai ◽  
M Falanga ◽  
N Masetti

Abstract The hard X-ray source 2PBC J0658.0–1746 was proposed as an eclipsing magnetic cataclysmic variable of the polar type, based on optical follow-ups. We present the first spectral and timing analysis at X-ray energies with XMM–Newton, complemented with archival X-ray, optical, infrared (IR) photometry, and spectroscopy. The X-ray emission shows bright and faint phases and total eclipses recurring every 2.38 h, consistent with optical properties. This firmly identifies 2PBC J0658.0–1746 as an eclipsing polar, the second hard X-ray selected in the orbital period gap. The X-ray orbital modulation changes from cycle-to-cycle and the X-ray flux is strongly variable over the years, implying a non-stationary mass accretion rate both on short and long time-scales. The X-ray eclipses allow to refine the orbital ephemeris with period 0.09913398(4) d, and to constrain the binary inclination $79^{\circ}\lesssim i \lesssim 90^{\circ}$ and the mass ratio 0.18$\lt M_2/M_{\mathrm{ WD}}\lt $0.40. A companion mass M$_{2}=0.2-0.25\rm \, M_{\odot }$ with a radius R$_{2}=0.24-0.26\rm \, R_{\odot }$ and spectral type ∼M4, at D$=209^{+3}_{-2}\rm \, pc$, is derived. A lower limit to the white dwarf mass of $\sim 0.6\, \rm \, M_{\odot }$ is obtained from the X-ray spectrum. An upper limit to the magnetic colatitude, $\beta \lesssim 50^{\circ}$, and a shift in azimuth, $\psi \sim 14^{\circ}$, of the main accreting pole are also estimated. The optical/IR spectral energy distribution shows large excess in the mid-IR due to lower harmonics of cyclotron emission. A high-state mass accretion rate $\rm \, \sim 0.4-1\times 10^{-10}\, M_{\odot }\, yr^{-1}$, lower than that of cataclysmic variables above the gap and close to that of systems below it, is estimated. With 2PBC J0658.0–1746, the number of hard X-ray-selected polars increases to 13 members, suggesting that they are not as rare as previously believed.


Sign in / Sign up

Export Citation Format

Share Document