scholarly journals GEX3, Expressed in the Male Gametophyte and in the Egg Cell of Arabidopsis thaliana Is Essential for Micropylar Pollen Tube Guidance and Plays a Role during Early Embryogenesis

2008 ◽  
Vol 1 (4) ◽  
pp. 586-598 ◽  
Author(s):  
Monica Alandete-Saez ◽  
Mily Ron ◽  
Sheila McCormick
Development ◽  
2000 ◽  
Vol 127 (20) ◽  
pp. 4511-4518 ◽  
Author(s):  
K.K. Shimizu ◽  
K. Okada

Sexual reproduction in plants, unlike that of animals, requires the action of multicellular haploid gametophytes. The male gametophyte (pollen tube) is guided to a female gametophyte through diploid sporophytic cells in the pistil. While interactions between the pollen tube and diploid cells have been described, little is known about the intercellular recognition systems between the pollen tube and the female gametophyte. In particular, the mechanisms that enable only one pollen tube to interact with each female gametophyte, thereby preventing polysperm, are not understood. We isolated female gametophyte mutants named magatama (maa) from Arabidopsis thaliana by screening for siliques containing half the normal number of mature seeds. In maa1 and maa3 mutants, in which the development of the female gametophyte was delayed, pollen tube guidance was affected. Pollen tubes were directed to mutant female gametophytes, but they lost their way just before entering the micropyle and elongated in random directions. Moreover, the mutant female gametophytes attracted two pollen tubes at a high frequency. To explain the interaction between gametophytes, we propose a monogamy model in which a female gametophyte emits two attractants and prevents polyspermy. This prevention process by the female gametophyte could increase a plant's inclusive fitness by facilitating the fertilization of sibling female gametophytes. In addition, repulsion between pollen tubes might help prevent polyspermy. The reproductive isolations observed in interspecific crosses in Brassicaceae are also consistent with the monogamy model.


Genetics ◽  
2001 ◽  
Vol 158 (4) ◽  
pp. 1773-1783 ◽  
Author(s):  
Antonia Procissi ◽  
Solveig de Laissardière ◽  
Madina Férault ◽  
Daniel Vezon ◽  
Georges Pelletier ◽  
...  

Abstract Mutant analysis represents one of the most reliable approaches to identifying genes involved in plant development. The screening of the Versailles collection of Arabidopsis thaliana T-DNA insertion transformants has allowed us to isolate different mutations affecting male gametophytic functions and viability. Among several mutated lines, five have been extensively studied at the genetic, molecular, and cytological levels. For each mutant, several generations of selfing and outcrossing have been carried out, leading to the conclusion that all these mutations are tagged and affect only the male gametophyte. However, only one out of the five mutations is completely penetrant. A variable number of T-DNA copies has integrated in the mutant lines, although all segregate at one mutated locus. Two mutants could be defined as “early mutants”: the mutated genes are presumably expressed during pollen grain maturation and their alteration leads to the production of nonfunctional pollen grains. Two other mutants could be defined as “late mutant” since their pollen is able to germinate but pollen tube growth is highly disturbed. Screening for segregation ratio distortions followed by thorough genetic analysis proved to be a powerful tool for identifying gametophytic mutations of all phases of pollen development.


2015 ◽  
Vol 112 (43) ◽  
pp. 13378-13383 ◽  
Author(s):  
Hua Jiang ◽  
Jun Yi ◽  
Leonor C. Boavida ◽  
Yuan Chen ◽  
Jörg D. Becker ◽  
...  

An Arabidopsis pollen grain (male gametophyte) consists of three cells: the vegetative cell, which forms the pollen tube, and two sperm cells enclosed within the vegetative cell. It is still unclear if there is intercellular communication between the vegetative cell and the sperm cells. Here we show that ABA-hypersensitive germination3 (AHG3), encoding a protein phosphatase, is specifically transcribed in the vegetative cell but predominantly translated in sperm cells. We used a series of deletion constructs and promoter exchanges to document transport of AHG3 transcripts from the vegetative cell to sperm and showed that their transport requires sequences in both the 5′ UTR and the coding region. Thus, in addition its known role in transporting sperm during pollen tube growth, the vegetative cell also contributes transcripts to the sperm cells.


2021 ◽  
Author(s):  
Khushbu Kumari ◽  
Meng Zhao ◽  
Sebastian Britz ◽  
Christine Weiste ◽  
Wolfgang Dröge-Laser ◽  
...  

ABSTRACTNon-specific lipid transfer proteins (LTPs) represent a sub-class among the large family of Cysteine-rich proteins (CRPs) specific to land plants. LTPs possess a hydrophobic cavity, enabling them to bind and stabilize a variety of lipid molecules outside membranes. In line with the existence of an N-terminal signal peptide, secreted LTPs represent a well-suited mobile signal carrier in the plant’s extracellular matrix. Thus, LTPs are currently considered as key players to mediate the bulk flow of lipids between membranes/compartments as well as the buildup of lipid barrier polymers including cutin and suberin.Here, we show that floral expressed Arabidopsis thaliana AtLtpI.4 (AtLTP2) and AtLtpI.8 (AtLTP5), mutually control cell-cell communication between growing pollen tubes and ovules during fertilization. Arabidopsis mutants lacking functional AtLtpI.4 and AtLtpI.8 exhibit significantly reduced fertilization success. Cross-pollination and cell biological analyses revealed that AtLtpI.4/I.8 double mutants are impaired in pollen tube guidance towards ovules. Our finding that the AtLtpI.4/I.8 phenotype correlates with aberrant callose depositions in the micropylar region during ovule development suggests that both LTPs represent novel players of a joint signaling pathway that controls callose homeostasis in the female gametophyte.


2021 ◽  
Vol 40 (2) ◽  
pp. 205-222
Author(s):  
Monica Scali ◽  
Alessandra Moscatelli ◽  
Luca Bini ◽  
Elisabetta Onelli ◽  
Rita Vignani ◽  
...  

AbstractPollen tube elongation is characterized by a highly-polarized tip growth process dependent on an efficient vesicular transport system and largely mobilized by actin cytoskeleton. Pollen tubes are an ideal model system to study exocytosis, endocytosis, membrane recycling, and signaling network coordinating cellular processes, structural organization and vesicular trafficking activities required for tip growth. Proteomic analysis was applied to identifyNicotiana tabacumDifferentially Abundant Proteins (DAPs) after in vitro pollen tube treatment with membrane trafficking inhibitors Brefeldin A, Ikarugamycin and Wortmannin. Among roughly 360 proteins separated in two-dimensional gel electrophoresis, a total of 40 spots visibly changing between treated and control samples were identified by MALDI-TOF MS and LC–ESI–MS/MS analysis. The identified proteins were classified according to biological processes, and most proteins were related to pollen tube energy metabolism, including ammino acid synthesis and lipid metabolism, structural features of pollen tube growth as well modification and actin cytoskeleton organization, stress response, and protein degradation. In-depth analysis of proteins corresponding to energy-related pathways revealed the male gametophyte to be a reliable model of energy reservoir and dynamics.


Genes ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 249
Author(s):  
Weimiao Liu ◽  
Liai Xu ◽  
Hui Lin ◽  
Jiashu Cao

The growth of plant cells is inseparable from relaxation and expansion of cell walls. Expansins are a class of cell wall binding proteins, which play important roles in the relaxation of cell walls. Although there are many members in expansin gene family, the functions of most expansin genes in plant growth and development are still poorly understood. In this study, the functions of two expansin genes, AtEXPA4 and AtEXPB5 were characterized in Arabidopsis thaliana. AtEXPA4 and AtEXPB5 displayed consistent expression patterns in mature pollen grains and pollen tubes, but AtEXPA4 also showed a high expression level in primary roots. Two single mutants, atexpa4 and atexpb5, showed normal reproductive development, whereas atexpa4atexpb5 double mutant was defective in pollen tube growth. Moreover, AtEXPA4 overexpression enhanced primary root elongation, on the contrary, knocking out AtEXPA4 made the growth of primary root slower. Our results indicated that AtEXPA4 and AtEXPB5 were redundantly involved in pollen tube growth and AtEXPA4 was required for primary root elongation.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Kazuki Motomura ◽  
Hidenori Takeuchi ◽  
Michitaka Notaguchi ◽  
Haruna Tsuchi ◽  
Atsushi Takeda ◽  
...  

AbstractDuring the double fertilization process, pollen tubes deliver two sperm cells to an ovule containing the female gametes. In the pollen tube, the vegetative nucleus and sperm cells move together to the apical region where the vegetative nucleus is thought to play a crucial role in controlling the direction and growth of the pollen tube. Here, we report the generation of pollen tubes in Arabidopsis thaliana whose vegetative nucleus and sperm cells are isolated and sealed by callose plugs in the basal region due to apical transport defects induced by mutations in the WPP domain-interacting tail-anchored proteins (WITs) and sperm cell-specific expression of a dominant mutant of the CALLOSE SYNTHASE 3 protein. Through pollen-tube guidance assays, we show that the physiologically anuclear mutant pollen tubes maintain the ability to grow and enter ovules. Our findings provide insight into the sperm cell delivery mechanism and illustrate the independence of the tip-localized vegetative nucleus from directional growth control of the pollen tube.


The development of the male gametophyte of Taxus baccata has been studied over a period of 20 weeks, from germination of the microspore in February to spermatogenesis in July. A few days after germination the microspore nucleus divides and a transverse wall forms at the equator cutting off the small generative cell and a large tube cell. The latter immediately begins to expand to form the pollen tube. The first division thus establishes the polarity of the gametophyte and the generative cell is regarded as proximal. The transverse wall is ephemeral, and within six weeks it has disappeared. The nucleus of the generative cell divides while still at the proximal pole. The two daughter nuclei are unequal in size, but they remain associated and together move distally. The larger nucleus eventually becomes the nucleus of the spermatogenous cell, and the smaller the sterile nucleus. The spermatogenous cell acquires a distinctive cytoplasm and becomes surrounded by a wall which arises de novo . The nucleus of the spermatogenous cell enlarges, but always remains towards one side of the cell so that at mitosis the spindle is contained within one hemisphere. After division the wall of the spermatogenous cell is ruptured and the two sperms are released as naked nuclei of equal size. The cytoplasm of the spermatogenous cell degenerates as it enters the tube, but remains recognizable until fertilization.


Sign in / Sign up

Export Citation Format

Share Document