scholarly journals Selective enrichment of a large size genomic DNA fragment by affinity capture: an approach for genome mapping

1990 ◽  
Vol 18 (7) ◽  
pp. 1789-1795 ◽  
Author(s):  
Rajendra P. Kandpal ◽  
David C. Ward ◽  
Sherman M. Weissman
Genetics ◽  
2001 ◽  
Vol 157 (1) ◽  
pp. 133-140
Author(s):  
Kazumi Inada ◽  
Yoshinori Morimoto ◽  
Toshihide Arima ◽  
Yukio Murata ◽  
Takashi Kamada

Abstract Sexual development in the mushroom Coprinus cinereus is under the control of the A and B mating-type loci, both of which must be different for a compatible, dikaryotic mycelium to form between two parents. The A genes, encoding proteins with homeodomain motifs, regulate conjugate division of the two nuclei from each mating partner and promote the formation of clamp connections. The latter are hyphal configurations required for the maintenance of the nuclear status in the dikaryotic phase of basidiomycetes. The B genes encode pheromones and pheromone receptors. They regulate the cellular fusions that complete clamp connections during growth, as well as the nuclear migration required for dikaryosis. The AmutBmut strain (326) of C. cinereus, in which both A- and B-regulated pathways are constitutively activated by mutations, produces, without mating, dikaryon-like, fertile hyphae with clamp connections. In this study we isolated and characterized clampless1-1 (clp1-1), a mutation that blocks clamp formation, an essential step in A-regulated sexual development, in the AmutBmut background. A genomic DNA fragment that rescues the clp1-1 mutation was identified by transformations. Sequencing of the genomic DNA, together with RACE experiments, identified an ORF interrupted by one intron, encoding a novel protein of 365 amino acids. The clp1-1 mutant allele carries a deletion of four nucleotides, which is predicted to cause elimination of codon 128 and frameshifts thereafter. The clp1 transcript was normally detected only in the presence of the A protein heterodimer formed when homokaryons with compatible A genes were mated. Forced expression of clp1 by promoter replacements induced clamp development without the need for a compatible A gene combination. These results indicate that expression of clp1 is necessary and sufficient for induction of the A-regulated pathway that leads to clamp development.


2005 ◽  
Vol 21 (5) ◽  
pp. 1472-1477 ◽  
Author(s):  
T. Cano ◽  
J.C. Murphy ◽  
G.E. Fox ◽  
R.C. Willson

2003 ◽  
Vol 185 (18) ◽  
pp. 5536-5545 ◽  
Author(s):  
Nicholas V. Coleman ◽  
Jim C. Spain

ABSTRACT Mycobacterium strains that grow on ethene and vinyl chloride (VC) are widely distributed in the environment and are potentially useful for biocatalysis and bioremediation. The catabolic pathway of alkene assimilation in mycobacteria is not well characterized. It is clear that the initial step is a monooxygenase-mediated epoxidation that produces epoxyethane from ethene and chlorooxirane from VC, but the enzymes involved in subsequent transformation of the epoxides have not been identified. We investigated epoxyethane metabolism in Mycobacterium strain JS60 and discovered a coenzyme M (CoM)-dependent enzyme activity in extracts from VC- and ethene-grown cells. PCR amplifications using primers targeted at epoxyalkane:CoM transferase (EaCoMT) genes yielded part of the JS60 EaCoMT gene, which was used to clone an 8.4-kb genomic DNA fragment. The complete EaCoMT gene (etnE) was recovered, along with genes (etnABCD) encoding a four-component monooxygenase and two genes possibly involved in acyl-CoA ester metabolism. Reverse transcription-PCR indicated that the etnE and etnA genes were cotranscribed and inducible by ethene and VC. Heterologous expression of the etnE gene in Mycobacterium smegmatis mc2155 using the pMV261 vector gave a recombinant strain capable of transforming epoxyethane, epoxypropane, and chlorooxirane. A metabolite identified by mass spectrometry as 2-hydroxyethyl-CoM was produced from epoxyethane. The results indicate that the EaCoMT and monooxygenase enzymes encoded by a single operon (etnEABCD) catalyze the initial reactions in both the VC and ethene assimilation pathways. CoM-mediated reactions appear to be more widespread in bacteria than was previously believed.


1996 ◽  
Vol 219 (1) ◽  
pp. 31-35 ◽  
Author(s):  
Kenji Sakoda ◽  
Megumi Fujiwara ◽  
Shigeki Arai ◽  
Asuka Suzuki ◽  
Jun-ichi Nishikawa ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document