scholarly journals U17XS8, a small nucleolar RNA with a 12 nt complementarity to 18S rRNA and coded by a sequence repeated in the six introns ofXenopus laevisribosomal protein S8 gene

1994 ◽  
Vol 22 (5) ◽  
pp. 732-741 ◽  
Author(s):  
Francesco Cecconi ◽  
Paolo Mariottini ◽  
Fabrizio Loreni ◽  
Paola Pierandrei-Amaldi ◽  
Nadia Campioni ◽  
...  
1999 ◽  
Vol 19 (9) ◽  
pp. 6012-6019 ◽  
Author(s):  
Kishor Sharma ◽  
David Tollervey

ABSTRACT The loop of a stem structure close to the 5′ end of the 18S rRNA is complementary to the box A region of the U3 small nucleolar RNA (snoRNA). Substitution of the 18S loop nucleotides inhibited pre-rRNA cleavage at site A1, the 5′ end of the 18S rRNA, and at site A2, located 1.9 kb away in internal transcribed spacer 1. This inhibition was largely suppressed by a compensatory mutation in U3, demonstrating functional base pairing. The U3–pre-rRNA base pairing is incompatible with the structure that forms in the mature 18S rRNA and may prevent premature folding of the pre-rRNA. In theEscherichia coli pre-rRNA the homologous region of the 16S rRNA is also sequestered, in that case by base pairing to the 5′ external transcribed spacer (5′ ETS). Cleavage at site A0in the yeast 5′ ETS strictly requires base pairing between U3 and a sequence within the 5′ ETS. In contrast, the U3-18S interaction is not required for A0 cleavage. U3 therefore carries out at least two functionally distinct base pair interactions with the pre-rRNA. The nucleotide at the site of A1 cleavage was shown to be specified by two distinct signals; one of these is the stem-loop structure within the 18S rRNA. However, in contrast to the efficiency of cleavage, the position of A1 cleavage is not dependent on the U3-loop interaction. We conclude that the 18S stem-loop structure is recognized at least twice during pre-rRNA processing.


1993 ◽  
Vol 13 (4) ◽  
pp. 2469-2477 ◽  
Author(s):  
J P Morrissey ◽  
D Tollervey

Subnuclear fractionation and coprecipitation by antibodies against the nucleolar protein NOP1 demonstrate that the essential Saccharomyces cerevisiae RNA snR30 is localized to the nucleolus. By using aminomethyl trimethyl-psoralen, snR30 can be cross-linked in vivo to 35S pre-rRNA. To determine whether snR30 has a role in rRNA processing, a conditional allele was constructed by replacing the authentic SNR30 promoter with the GAL10 promoter. Repression of snR30 synthesis results in a rapid depletion of snR30 and a progressive increase in cell doubling time. rRNA processing is disrupted during the depletion of snR30; mature 18S rRNA and its 20S precursor underaccumulate, and an aberrant 23S pre-rRNA intermediate can be detected. Initial results indicate that this 23S pre-rRNA is the same as the species detected on depletion of the small nucleolar RNA-associated proteins NOP1 and GAR1 and in an snr10 mutant strain. It was found that the 3' end of 23S pre-rRNA is located in the 3' region of ITS1 between cleavage sites A2 and B1 and not, as previously suggested, at the B1 site, snR30 is the fourth small nucleolar RNA shown to play a role in rRNA processing.


1998 ◽  
Vol 18 (6) ◽  
pp. 3431-3444 ◽  
Author(s):  
Dmitry A. Samarsky ◽  
Maurille J. Fournier

ABSTRACT The U3 small nucleolar RNA participates in early events of eukaryotic pre-rRNA cleavage and is essential for formation of 18S rRNA. Using an in vivo system, we have developed a functional map of the U3 small nucleolar RNA from Saccharomyces cerevisiae. The test strain features a galactose-dependent U3 gene in the chromosome and a plasmid-encoded allele with a unique hybridization tag. Effects of mutations on U3 production were analyzed by evaluating RNA levels in cells grown on galactose medium, and effects on U3 function were assessed by growing cells on glucose medium. The major findings are as follows: (i) boxes C′ and D and flanking helices are critical for U3 accumulation; (ii) boxes B and C are not essential for U3 production but are important for function, most likely due to binding of a trans-acting factor(s); (iii) the 5′ portion of U3 is required for function but not stability; and, (iv) strikingly, the nonconserved hairpins 2, 3, and 4, which account for 50% of the molecule, are not required for accumulation or function.


1993 ◽  
Vol 13 (4) ◽  
pp. 2469-2477
Author(s):  
J P Morrissey ◽  
D Tollervey

Subnuclear fractionation and coprecipitation by antibodies against the nucleolar protein NOP1 demonstrate that the essential Saccharomyces cerevisiae RNA snR30 is localized to the nucleolus. By using aminomethyl trimethyl-psoralen, snR30 can be cross-linked in vivo to 35S pre-rRNA. To determine whether snR30 has a role in rRNA processing, a conditional allele was constructed by replacing the authentic SNR30 promoter with the GAL10 promoter. Repression of snR30 synthesis results in a rapid depletion of snR30 and a progressive increase in cell doubling time. rRNA processing is disrupted during the depletion of snR30; mature 18S rRNA and its 20S precursor underaccumulate, and an aberrant 23S pre-rRNA intermediate can be detected. Initial results indicate that this 23S pre-rRNA is the same as the species detected on depletion of the small nucleolar RNA-associated proteins NOP1 and GAR1 and in an snr10 mutant strain. It was found that the 3' end of 23S pre-rRNA is located in the 3' region of ITS1 between cleavage sites A2 and B1 and not, as previously suggested, at the B1 site, snR30 is the fourth small nucleolar RNA shown to play a role in rRNA processing.


IUBMB Life ◽  
2021 ◽  
Author(s):  
Alessio Biagioni ◽  
Shima Tavakol ◽  
Nooshin Ahmadirad ◽  
Masoumeh Zahmatkeshan ◽  
Lucia Magnelli ◽  
...  

Biochimie ◽  
2008 ◽  
Vol 90 (6) ◽  
pp. 898-907 ◽  
Author(s):  
Yumi Sasano ◽  
Yusuke Hokii ◽  
Kunio Inoue ◽  
Hiroshi Sakamoto ◽  
Chisato Ushida ◽  
...  

1993 ◽  
Vol 13 (7) ◽  
pp. 4382-4390
Author(s):  
O J Rimoldi ◽  
B Raghu ◽  
M K Nag ◽  
G L Eliceiri

We have recently described three novel human small nucleolar RNA species with unique nucleotide sequences, which were named E1, E2, and E3. The present article describes specific psoralen photocross-linking in whole HeLa cells of E1, E2, and E3 RNAs to nucleolar pre-rRNA. These small RNAs were cross-linked to different sections of pre-rRNA. E1 RNA was cross-linked to two segments of nucleolar pre-rRNA; one was within residues 697 to 1163 of the 5' external transcribed spacer, and the other one was between nucleotides 664 and 1021 of the 18S rRNA sequence. E2 RNA was cross-linked to a region within residues 3282 to 3667 of the 28S rRNA sequence. E3 RNA was cross-linked to a sequence between positions 1021 and 1639 of the 18S rRNA sequence. Primer extension analysis located psoralen adducts in E1, E2, and E3 RNAs that were enriched in high-molecular-weight fractions of nucleolar RNA. Some of these psoralen adducts might be cross-links of E1, E2, and E3 RNAs to large nucleolar RNA. Antisense oligodeoxynucleotide-targeted RNase H digestion of nucleolar extracts revealed accessible segments in these three small RNAs. The accessible regions were within nucleotide positions 106 to 130 of E1 RNA, positions 24 to 48 and 42 to 66 of E2 RNA, and positions 7 to 16 and about 116 to 122 of E3 RNA. Some of the molecules of these small nucleolar RNAs sedimented as if associated with larger structures when both nondenatured RNA and a nucleolar extract were analyzed.


Sign in / Sign up

Export Citation Format

Share Document