scholarly journals A replication-linked mutational gradient drives somatic mutation accumulation and influences germline polymorphisms and genome composition in mitochondrial DNA

2021 ◽  
Author(s):  
Monica Sanchez-Contreras ◽  
Mariya T Sweetwyne ◽  
Brendan F Kohrn ◽  
Kristine A Tsantilas ◽  
Michael J Hipp ◽  
...  

Abstract Mutations in mitochondrial DNA (mtDNA) cause maternally inherited diseases, while somatic mutations are linked to common diseases of aging. Although mtDNA mutations impact health, the processes that give rise to them are under considerable debate. To investigate the mechanism by which de novo mutations arise, we analyzed the distribution of naturally occurring somatic mutations across the mouse and human mtDNA obtained by Duplex Sequencing. We observe distinct mutational gradients in G→A and T→C transitions delimited by the light-strand origin and the mitochondrial Control Region (mCR). The gradient increases unequally across the mtDNA with age and is lost in the absence of DNA polymerase γ proofreading activity. In addition, high-resolution analysis of the mCR shows that important regulatory elements exhibit considerable variability in mutation frequency, consistent with them being mutational ‘hot-spots’ or ‘cold-spots’. Collectively, these patterns support genome replication via a deamination prone asymmetric strand-displacement mechanism as the fundamental driver of mutagenesis in mammalian DNA. Moreover, the distribution of mtDNA single nucleotide polymorphisms in humans and the distribution of bases in the mtDNA across vertebrate species mirror this gradient, indicating that replication-linked mutations are likely the primary source of inherited polymorphisms that, over evolutionary timescales, influences genome composition during speciation.

2021 ◽  
Author(s):  
Monica Sanchez-Contreras ◽  
Mariya T Sweetwyne ◽  
Brendan F Kohrn ◽  
Kristine A Tsantilas ◽  
Jeanne Fredrickson ◽  
...  

Background: Mutations in the mitochondrial genome (mtDNA) can cause devastating maternally inherited diseases, while the accumulation of somatic mtDNA mutations is linked to common diseases of aging. Although mtDNA mutations impact human health, the process(es) that give rise to these mutations are unclear and are under considerable debate. We analyzed the distribution of naturally occurring somatic mutations across the mouse and human mtDNA obtained by Duplex Sequencing to provide clues to the mechanism by which de novo mutations arise as well as how the genome is replicated. Results: We observe two distinct mutational gradients in G→A and T→C transitions, but not their complements, that are delimited by the light-strand origin and the control region (CR). The gradients increase with age and are lost in the absence of DNA polymerase γ proofreading activity. A nearly identical pattern is present in human mtDNA somatic mutations. The distribution of mtDNA SNPs in the human population and genome base composition across >3,000 vertebrate species mirror this gradient pattern, pointing to evolutionary conservation of this phenomenon. Lastly, high-resolution analysis of the mtDNA control region highlights mutational hot-spots and cold-spots that strongly align with important regulatory regions. Conclusions: Collectively, these patterns support an asymmetric strand-displacement mechanism with key regulatory structures in the CR and argue against alternative replication models. The mutational gradient is a fundamental consequence of mtDNA replication that drives somatic mutation accumulation and influences inherited polymorphisms and, over evolutionary timescales, genome composition.


2019 ◽  
Vol 116 (50) ◽  
pp. 25172-25178 ◽  
Author(s):  
Arslan A. Zaidi ◽  
Peter R. Wilton ◽  
Marcia Shu-Wei Su ◽  
Ian M. Paul ◽  
Barbara Arbeithuber ◽  
...  

Heteroplasmy—the presence of multiple mitochondrial DNA (mtDNA) haplotypes in an individual—can lead to numerous mitochondrial diseases. The presentation of such diseases depends on the frequency of the heteroplasmic variant in tissues, which, in turn, depends on the dynamics of mtDNA transmissions during germline and somatic development. Thus, understanding and predicting these dynamics between generations and within individuals is medically relevant. Here, we study patterns of heteroplasmy in 2 tissues from each of 345 humans in 96 multigenerational families, each with, at least, 2 siblings (a total of 249 mother–child transmissions). This experimental design has allowed us to estimate the timing of mtDNA mutations, drift, and selection with unprecedented precision. Our results are remarkably concordant between 2 complementary population-genetic approaches. We find evidence for a severe germline bottleneck (7–10 mtDNA segregating units) that occurs independently in different oocyte lineages from the same mother, while somatic bottlenecks are less severe. We demonstrate that divergence between mother and offspring increases with the mother’s age at childbirth, likely due to continued drift of heteroplasmy frequencies in oocytes under meiotic arrest. We show that this period is also accompanied by mutation accumulation leading to more de novo mutations in children born to older mothers. We show that heteroplasmic variants at intermediate frequencies can segregate for many generations in the human population, despite the strong germline bottleneck. We show that selection acts during germline development to keep the frequency of putatively deleterious variants from rising. Our findings have important applications for clinical genetics and genetic counseling.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Dylan G. Chitwood ◽  
Qinghua Wang ◽  
Kathryn Elliott ◽  
Aiyana Bullock ◽  
Dwon Jordana ◽  
...  

Abstract Background As bioprocess intensification has increased over the last 30 years, yields from mammalian cell processes have increased from 10’s of milligrams to over 10’s of grams per liter. Most of these gains in productivity can be attributed to increasing cell densities within bioreactors. As such, strategies have been developed to minimize accumulation of metabolic wastes, such as lactate and ammonia. Unfortunately, neither cell growth nor biopharmaceutical production can occur without some waste metabolite accumulation. Inevitably, metabolic waste accumulation leads to decline and termination of the culture. While it is understood that the accumulation of these unwanted compounds imparts a suboptimal culture environment, little is known about the genotoxic properties of these compounds that may lead to global genome instability. In this study, we examined the effects of high and moderate extracellular ammonia on the physiology and genomic integrity of Chinese hamster ovary (CHO) cells. Results Through whole genome sequencing, we discovered 2394 variant sites within functional genes comprised of both single nucleotide polymorphisms and insertion/deletion mutations as a result of ammonia stress with high or moderate impact on functional genes. Furthermore, several of these de novo mutations were found in genes whose functions are to maintain genome stability, such as Tp53, Tnfsf11, Brca1, as well as Nfkb1. Furthermore, we characterized microsatellite content of the cultures using the CriGri-PICR Chinese hamster genome assembly and discovered an abundance of microsatellite loci that are not replicated faithfully in the ammonia-stressed cultures. Unfaithful replication of these loci is a signature of microsatellite instability. With rigorous filtering, we found 124 candidate microsatellite loci that may be suitable for further investigation to determine whether these loci may be reliable biomarkers to predict genome instability in CHO cultures. Conclusion This study advances our knowledge with regards to the effects of ammonia accumulation on CHO cell culture performance by identifying ammonia-sensitive genes linked to genome stability and lays the foundation for the development of a new diagnostic tool for assessing genome stability.


2020 ◽  
Author(s):  
Amitabh Das ◽  
Xiaobei Wang ◽  
Jessica Kang ◽  
Alyssa Coulter ◽  
Amol C. Shetty ◽  
...  

SUMMARYOsteoclasts (OCs) are bone resorbing cells formed by the serial fusion of monocytes. In mice and humans, three distinct subsets of monocytes exist; however, it is unclear if all of them exhibit osteoclastogenic potential. Here we show that in wild-type mice, Ly6Chi and Ly6Cint monocytes are the primary source of OC formation when compared to Ly6C− monocytes. Their osteoclastogenic potential is dictated by increased expression of signaling receptors and activation of pre-established transcripts, as well as de novo gain in enhancer activity and promoter changes. In the absence of IRF8, a transcription factor important for myelopoiesis and osteoclastogenesis, all three monocyte subsets are programmed to display higher osteoclastogenic potential. Enhanced NFATc1 nuclear translocation and amplified transcriptomic and epigenetic changes initiated at early developmental stages direct the increased osteoclastogenesis in Irf8 deficient mice. Collectively, our study provides novel insights into the transcription factors and active cis-regulatory elements that regulate OC differentiation.


2020 ◽  
Author(s):  
Qing Li ◽  
Yan Mao ◽  
Shaoying Li ◽  
Hongzi Du ◽  
Wenzhi He ◽  
...  

Abstract Background: In order to mitigate the risk of allele dropout (ADO) and ensure the accuracy of preimplantation genetic testing for monogenic disease (PGT-M), it is necessary to construct parental haplotypes.. Typically, haplotype resolution is obtained by genotyping multiple polymorphic markers in both parents and a proband or a relative. Sometimes, single sperm typing, or tests on the polar bodies may also be useful. Nevertheless, this process is time-consuming. At present, there was no simple linkage analysis strategy for patients without affected relatives.Method: To solve this problem, we established a haplotyping by linked-read sequencing (HLRS) method without the requirement for additional relatives. First, the haplotype of the genetic disease carriers in the family was constructed by linked-read sequencing, and then the informative single nucleotide polymorphisms (SNPs) in upstream and downstream mutation region were selected to construct the embryo haplotype and to determine whether the embryo was carrying the mutation. Two families were selected to validate this method; one with alpha thalassemia and the other with NDP gene disorder.Results: The haplotyping by linked-read sequencing (HLRS) method was successfully applied to construct parental haplotypes without recruiting additional family members; the method was also validated for PGT-M. The mutation carriers in these families were sequenced by linked-read sequencing, and their haplotypes were successfully phased. Adjacent SNPs of the mutation gene were identified. The informative SNPs were chosen for linkage analyses to identify the carrier embryos. For the alpha thalassemia family, a normal blastocyst was transferred to the uterus and the accuracy of PGT-M was confirmed by amniocentesis at 16 weeks of gestation. Conclusions: Our results suggest that HLRS can be applied for PGT-M of monogenic disorders or de novo mutations where the mutations haplotype cannot be determined due to absence of affected relatives. Keywords: Preimplantation Genetic Testing for monogenic disease, Linked-read sequencing, Linkage analyses, Haplotype


2020 ◽  
Vol 39 (4) ◽  
pp. S23
Author(s):  
A. Gravina ◽  
T. Deuse ◽  
X. Hu ◽  
S. Agbor-Enoh ◽  
M. Koch ◽  
...  

2015 ◽  
Vol 212 (1) ◽  
pp. S40-S41
Author(s):  
Jun Ma ◽  
Kjersti Aagaard ◽  
Heidi Purcell ◽  
Lori Showalter ◽  
James Versalovic

Sign in / Sign up

Export Citation Format

Share Document