mtdna mutations
Recently Published Documents


TOTAL DOCUMENTS

443
(FIVE YEARS 180)

H-INDEX

48
(FIVE YEARS 11)

2022 ◽  
Vol 23 (2) ◽  
pp. 952
Author(s):  
Siarhei A. Dabravolski ◽  
Victoria A. Khotina ◽  
Vasily N. Sukhorukov ◽  
Vladislav A. Kalmykov ◽  
Liudmila M. Mikhaleva ◽  
...  

Cardiovascular diseases (CVD) are one of the leading causes of morbidity and mortality worldwide. mtDNA (mitochondrial DNA) mutations are known to participate in the development and progression of some CVD. Moreover, specific types of mitochondria-mediated CVD have been discovered, such as MIEH (maternally inherited essential hypertension) and maternally inherited CHD (coronary heart disease). Maternally inherited mitochondrial CVD is caused by certain mutations in the mtDNA, which encode structural mitochondrial proteins and mitochondrial tRNA. In this review, we focus on recently identified mtDNA mutations associated with CVD (coronary artery disease and hypertension). Additionally, new data suggest the role of mtDNA mutations in Brugada syndrome and ischemic stroke, which before were considered only as a result of mutations in nuclear genes. Moreover, we discuss the molecular mechanisms of mtDNA involvement in the development of the disease.


2022 ◽  
Vol 2 ◽  
Author(s):  
Monica Sanchez-Contreras ◽  
Scott R. Kennedy

Mitochondria are the main source of energy used to maintain cellular homeostasis. This aspect of mitochondrial biology underlies their putative role in age-associated tissue dysfunction. Proper functioning of the electron transport chain (ETC), which is partially encoded by the extra-nuclear mitochondrial genome (mtDNA), is key to maintaining this energy production. The acquisition of de novo somatic mutations that interrupt the function of the ETC have long been associated with aging and common diseases of the elderly. Yet, despite over 30 years of study, the exact role(s) mtDNA mutations play in driving aging and its associated pathologies remains under considerable debate. Furthermore, even fundamental aspects of age-related mtDNA mutagenesis, such as when mutations arise during aging, where and how often they occur across tissues, and the specific mechanisms that give rise to them, remain poorly understood. In this review, we address the current understanding of the somatic mtDNA mutations, with an emphasis of when, where, and how these mutations arise during aging. Additionally, we highlight current limitations in our knowledge and critically evaluate the controversies stemming from these limitations. Lastly, we highlight new and emerging technologies that offer potential ways forward in increasing our understanding of somatic mtDNA mutagenesis in the aging process.


2021 ◽  
Vol 12 ◽  
Author(s):  
Ji-Hoon Na ◽  
Min Jung Lee ◽  
Chul Ho Lee ◽  
Young-Mock Lee

Background and Purpose: Recent advances in molecular genetic testing have led to a rapid increase in the understanding of the genetics of Leigh syndrome. Several studies have suggested that Leigh syndrome with MT-ND3 mutation is strongly associated with epilepsy. This study focused on the epilepsy-related characteristics of Leigh syndrome with MT-ND3 mutation identified in a single tertiary hospital in South Korea.Methods: We selected 31 patients with mitochondrial DNA (mtDNA) mutations who were genetically diagnosed with mtDNA-associated Leigh syndrome. Among them, seven patients with MT-ND3 mutations were detected. We reviewed various clinical findings such as laboratory findings, brain images, electroencephalography data, seizure types, seizure frequency, antiepileptic drug use history, and current seizure status.Results: The nucleotide changes in the seven patients with the Leigh syndrome with MT-ND3 mutation were divided into two groups: m.10191T>C and m.10158T>C. Six of the seven patients were found to have the m.10191T>C mutations. The median value of the mutant load was 82.5%, ranging from 57.9 to 93.6%. No particular tendency was observed for the first symptom or seizure onset or mutant load. The six patients with the m.10191T>C mutation were diagnosed with epilepsy. Three of these patients were diagnosed with Lennox–Gastaut syndrome (LGS).Conclusion: We reported a very strong association between epilepsy and MT-ND3 mutation in Leigh syndrome, particularly the m.10191T>C mutation. The possibility of an association between the epilepsy phenotype of the m.10191T>C mutation and LGS was noted.


2021 ◽  
Vol 18 ◽  
Author(s):  
Isaac G. Onyango ◽  
James P. Bennett ◽  
Gorazd B. Stokin

: Alzheimer's disease (AD) is an irreversible, progressive neurodegenerative disease and the most common cause of dementia among older adults. There are no effective treatments avail- able for the disease, and it is associated with great societal concern because of the substantial costs of providing care to its sufferers, whose numbers will increase as populations age. While multiple causes have been proposed to be significant contributors to the onset of sporadic AD, increased age is a unifying risk factor. In addition to amyloid-β (Aβ) and tau protein playing a key role in the initi- ation and progression of AD, impaired mitochondrial bioenergetics and dynamics are likely major etiological factors in AD pathogenesis and have many potential origins, including Aβ and tau. Mito- chondrial dysfunction is evident in the central nervous system (CNS) and systemically early in the disease process. Addressing these multiple mitochondrial deficiencies is a major challenge of mito- chondrial systems biology. We review evidence for mitochondrial impairments ranging from mito- chondrial DNA (mtDNA) mutations to epigenetic modification of mtDNA, altered gene expres- sion, impaired mitobiogenesis, oxidative stress, altered protein turnover and changed organelle dy- namics (fission and fusion). We also discuss therapeutic approaches, including repurposed drugs, epigenetic modifiers, and lifestyle changes that target each level of deficiency which could poten- tially alter the course of this progressive, heterogeneous Disease while being cognizant that success- ful future therapeutics may require a combinatorial approach.


2021 ◽  
Author(s):  
Bee Hong Soon ◽  
Nadiah Abu ◽  
Nor Azian Abdul Murad ◽  
Sue-Mian Then ◽  
Azizi Abu Bakar ◽  
...  

Aim: Mitochondrial DNA (mtDNA) alterations play an important role in the multistep processes of cancer development. Gliomas are among the most diagnosed brain cancer. The relationship between mtDNA alterations and different grades of gliomas are still elusive. This study aimed to elucidate the profile of somatic mtDNA mutations in different grades of gliomas and correlate it with clinical phenotype. Materials & methods: Forty histopathologically confirmed glioma tissue samples and their matched blood were collected and subjected for mtDNA sequencing. Results & conclusion: About 75% of the gliomas harbored at least one somatic mutation in the mtDNA gene, and 45% of these mutations were pathogenic. Mutations were scattered across the mtDNA genome, and the commonest nonsynonymous mutations were located at complex I and IV of the mitochondrial respiratory chain. These findings may have implication for future research to determine the mitochondrial energetics and its downstream metabolomics on gliomas.


2021 ◽  
Vol 5 (Supplement_1) ◽  
pp. 690-690
Author(s):  
David Begelman ◽  
Martin Brand ◽  
Amutha Boominathan ◽  
Caitlin Lewis ◽  
Bhavna Dixit ◽  
...  

Abstract Replicative errors, inefficient repair, and proximity to reactive oxygen species production sites make the mitochondrial DNA (mtDNA) susceptible to damage with time. mtDNA mutations accumulate with age and accompany a progressive decline in organelle function. We lack molecular biology tools to manipulate mtDNA, thus we explore the possibility in vivo of utilizing allotopic expression, or the re-engineering mitochondrial genes and expressing them from the nucleus, as an approach to rescue defects arising from mtDNA mutations. This study uses a mouse model with a mutation in the mitochondrial ATP8 gene that encodes a protein subunit of the ATP synthase. We generated a transgenic mouse with an epitope-tagged recoded and mitochondrial-targeted ATP8 gene expressed from the nucleus. Our results show that the allotopically expressed ATP8 protein in the transgenic mice is robustly expressed across all tested tissues, successfully transported into the mitochondria, and incorporated into ATP synthase. We are currently evaluating if allotopic expression of ATP8 will functionally rescue the behavioral and bioenergetic defects in ATP8 mutant mice. Translating allotopic expression technology into a mammal and demonstrating systemic functional rescue will lend credence to utilizing allotopic expression as a gene therapy in humans to repair physiological consequences of mtDNA defects that may accumulate with age.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Kendra D. Maclaine ◽  
Kevin A. Stebbings ◽  
Daniel A. Llano ◽  
Justin C. Havird

Abstract Background Mitochondrial DNA (mtDNA) codes for products necessary for electron transport and mitochondrial gene translation. mtDNA mutations can lead to human disease and influence organismal fitness. The PolG mutator mouse lacks mtDNA proofreading function and rapidly accumulates mtDNA mutations, making it a model for examining the causes and consequences of mitochondrial mutations. Premature aging in PolG mice and their physiology have been examined in depth, but the location, frequency, and diversity of their mtDNA mutations remain understudied. Identifying the locations and spectra of mtDNA mutations in PolG mice can shed light on how selection shapes mtDNA, both within and across organisms. Results Here, we characterized somatic and germline mtDNA mutations in brain and liver tissue of PolG mice to quantify mutation count (number of unique mutations) and frequency (mutation prevalence). Overall, mtDNA mutation count and frequency were the lowest in the D-loop, where an mtDNA origin of replication is located, but otherwise uniform across the mitochondrial genome. Somatic mtDNA mutations have a higher mutation count than germline mutations. However, germline mutations maintain a higher frequency and were also more likely to be silent. Cytosine to thymine mutations characteristic of replication errors were the plurality of basepair changes, and missense C to T mutations primarily resulted in increased protein hydrophobicity. Unlike wild type mice, PolG mice do not appear to show strand asymmetry in mtDNA mutations. Indel mutations had a lower count and frequency than point mutations and tended to be short, frameshift deletions. Conclusions Our results provide strong evidence that purifying selection plays a major role in the mtDNA of PolG mice. Missense mutations were less likely to be passed down in the germline, and they were less likely to spread to high frequencies. The D-loop appears to have resistance to mutations, either through selection or as a by-product of replication processes. Missense mutations that decrease hydrophobicity also tend to be selected against, reflecting the membrane-bound nature of mtDNA-encoded proteins. The abundance of mutations from polymerase errors compared with reactive oxygen species (ROS) damage supports previous studies suggesting ROS plays a minimal role in exacerbating the PolG phenotype, but our findings on strand asymmetry provide discussion for the role of polymerase errors in wild type organisms. Our results provide further insight on how selection shapes mtDNA mutations and on the aging mechanisms in PolG mice.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 954-954
Author(s):  
Laxminath Tumburu ◽  
Maliha Maryam Ahmad ◽  
Chunyu Liu ◽  
Clifton L. Dalgard ◽  
Mehdi Pirooznia ◽  
...  

Abstract Background: The simple point mutation that causes sickle cell disease (SCD) belies the extensive systemic damage it can cause. While the sickle pathology is initiated by polymerization of HbS, the multiple end-organ damage is inflicted by years of on-going inflammation and vasculopathy. An emerging marker of inflammation is the accumulation of acquired heteroplasmy mutations in mitochondrial DNA (mtDNA). Given the underlying chronic inflammation in SCD, we hypothesized that SCD patients display increased rates of mtDNA mutations, and previously confirmed (1). Here, we further performed indepth analyses in an ethnically matched normal (HbAA) as well as sickle trait (HbAS) subjects from another independent cohort, the Jackson Heart Study (JHS). Methods: We analyzed and compared whole genome sequencing (WGS) data from the from NIH cohort of 676 SCD patients of African ancestry with that of 621 ethnic-matched indviduals from the 1000 Genomes Project (1KG), and 3,580 individuals from the JHS cohort. The NIH SCD cohort included 561 HbSS & HbSβ 0thalassemia (combined), 90 HbSC, and 25 HbSβ + thalassemia genotypes, the 1KG cohort - 516 HbAA and 105 HbAS and JHS cohort - 3,200 HbAA, 89 HbAC (hemoglobin C trait), and 291 HbAS. Additionally, to further understand any potential sequencing depth bias, as well as to compare between two patient cohorts (NIH SCD & JHS cohorts) with underlying conditons that may influence the heteroplasmy bias, we downsampled 300 NIH cohort HbSS samples to a sequencing depth similar to JHS cohort, and compared their heteroplasmy burden. Mitochondrial sequences extracted from the cleaned WGS data of these 3 cohorts were analyzed for heteroplasmic and homoplasmic variants using mitoCaller from the package mitoAnalyzer. Results: The average depth per locus was ~6,671X for the NIH SCD cohort , ~2,879X for the 1KG cohort, and ~2169X for JHS cohort. We compared the quantity of heteroplasmic variants across the different NIH SCD genotype with 1KG (HbAA & HbAS), and JHS (HbAA, HbAC and HbAS) genotypic groups. The median number of heteroplasmic variants per individual increased progressively from HbAA, HbAS, HbSβ +thalassemia, and HbSC with the highest median number of 118 in HbSS & HbSβ 0 (Fig 1A) in NIH SCD cohort. It is noteworthy that the median mtDNA heteroplasmy in HbAA individuals in 1KG cohort was significantly lower than those in JHS cohort (Table insert in Fig 1A) which may be related to the underlying cardiovascular disease in the JHS cohort; whereas similar heteroplasmy burden in HbAS individuals between these 2 cohorts may underscore the genotype (HbAS) as the driver of heteroplasmy in these cohorts. We compared the heteroplasmy burden of a downsampled subset (n=300) NIH HbSS with that of JHS HbAA, HbAC and HbAS genotypes (Fig 1B). Although, the 70% reduction in sequencing depth resulted in the slight reduction in heteroplasmy burden, we noticed higher heteroplasmic variability (standard deviation) in this subset of NIH HbSS patients. This variability may be attributable to extreme variation in SCD phenotypic severity. We then applied cumulative distribution function to this downsampled subset and compared with JHS genotypes. We found the NIH HbSS patients have disproportionately higher proportion of heteroplasmy variants (Fig 1D) when compared to the JHS genotypes (HbAA, HbAC, and HbAS). Conclusion: We conclude that there is an increased prevalence of heteroplasmic mtDNA variants in SCD compared to ethnic-matched normal (HbAA) populations. Normal individuals with HbAA in JHS cohort have significantly higher heteroplasmic burden compared to those in 1KG cohort, suggesting an underlying cardiovascular disease in JHS cohort as a driving factor. Within each 1KG and JHS cohorts, individuals with sickle cell trait (HbAS) have similar heteroplasmy burden and also higher than those with HbAA, highlighting the potential significance of this genotype. Reducing the sequencing depth by > 70% (downsampling) led to the filtering out of heteroplasmy variants that would have been discovered with the original deeper sequencing depth of ~7300X. Nonetheless, downsampled HbSS samples still retained disproportionately higher heteroplasmy burden compared to non-SCD subjects. We are currently investigating if there is any correlation between mtDNA heteroplasmy burden and severity of clinical phenotypes among the SCD patients. 1. Ahmad, MM et al, Blood 136 (1):11-11 (2020) Figure 1 Figure 1. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 1689-1689
Author(s):  
Livius Penter ◽  
Jackson Southard ◽  
Shuqiang Li ◽  
Caleb A. Lareau ◽  
Leif S. Ludwig ◽  
...  

Abstract Reconstitution of donor hematopoiesis after allogeneic hematopoietic stem cell transplantation (HSCT) forms the basis for effective graft-versus-leukemia responses, but mixed chimerism is not an infrequent outcome. How the donor and host hematopoietic system interact under conditions of mixed chimerism remains incompletely understood. Multi-modal single cell sequencing platforms are increasingly available and provide information regarding cell identities and interactions at high resolution. However, the analysis of post-transplant immune reconstitution requires consistent distinguishing of donor- and recipient-derived cells, which for sparse single cell sequencing data until now has remained a challenge. Recently, mitochondrial DNA (mtDNA) mutations have been recognized for their potential as personal genetic barcodes that can be detected with mitochondrial single cell assay for transposase-accessible chromatin with sequencing (mtscATAC-seq). We hypothesized that individual-specific mtDNA mutations could provide a sensitive and robust approach for distinguishing donor- from recipient-derived cells, and therefore tested this approach on bone marrow (BM) samples from patients with relapsed acute myeloid leukemia (AML) post-HSCT. We employed ATAC with select cell surface antigen profiling by sequencing (ASAP-seq), which enables the detection of mtDNA mutations within distinct surface marker-defined cell populations alongside chromatin accessibility. We selected serial samples collected from the ETCTN 10026 study, which tested combined decitabine (days 1-5, every 4 weeks, start cycle 0) and ipilimumab (day 1, every 4 weeks, start cycle 1) in relapsed AML post-HSCT. We focused on 13 samples (study entry, on treatment and disease progression) from 3 patients: AML1012 (HSCT from a matched related donor [MRD]), and AML1010 and AML1026 (matched unrelated donor [MUD]-HSCT). In total, we obtained 33,943 ASAP-seq profiles, including 3,283 single T cells. While clustering using single cell chromatin profiles alone only allowed identification of either CD4 + or CD8 + T cells, integration with surface marker expression enabled more detailed annotations of 8 T cell subpopulations and NK cells. Further, phenotypically distinct subpopulations such as CD57 + CD4 + and CD8 + T cells shared highly similar chromatin profiles, and 11.1% of CD4 + and 33.7% of CD8 + T cells would have been mislabeled based on clustering of chromatin profiles alone. Thus, ASAP-seq identified T cell subsets with markedly improved accuracy and resolution than scATAC-seq alone. Upon evaluation of mtDNA mutations to discriminate donor- and recipient-derived single T cells, we found that this was unreliable for MRD-HSCT (AML1012), but highly robust in the setting of MUD-HSCT (AML1010, AML1026), consistent with maternal inheritance of mitochondrial genomes. For the latter two patients, we identified 48 donor- and 26 recipient-specific mtDNA mutations, all with high heteroplasmy (range 82 - 99%). Presence of donor- and recipient-derived mtDNA mutations was mutually exclusive, and recipient-specific mtDNA mutations were also detectable in AML cells. Clinical bulk and mtDNA mutation-based single T cell chimerisms were highly correlated (r = 0.97). AML1010 had sustained complete T cell chimerism (>97%) during study treatment. In AML1026, the mtDNA mutation-based T cell chimerism rose from 55% to 71% after 1 cycle of decitabine and then remained stable until disease progression 3 months later. This was associated with increased percentage of donor-derived CD4 + T cells (45% [study entry] vs. 71% [after 1 cycle of decitabine], p < 0.01), while donor-derived CD8 + T cells remained unchanged at 76%. Across all studied timepoints in AML1026, donor versus recipient skewing was also highest in CD4 + T cell subsets, with fewer naïve (20% vs. 31%, p < 0.01) but more donor-derived CD57 + CD4 + T cells (13% vs. 3%, p < 0.01). We demonstrate that mtDNA mutations can discriminate between donor- and recipient-derived single cells, enabling detection and in-depth characterization of chimeric immune cell dynamics after MUD HSCT. This approach will allow to systematically dissect conditions of mixed chimerism in the post-transplant setting with larger studies. Disclosures DeAngelo: Abbvie: Research Funding; Takeda: Consultancy; Servier: Consultancy; Pfizer: Consultancy; Novartis: Consultancy, Research Funding; Jazz: Consultancy; Incyte: Consultancy; Forty-Seven: Consultancy; Autolus: Consultancy; Amgen: Consultancy; Agios: Consultancy; Blueprint: Research Funding; Glycomimetrics: Research Funding. Neuberg: Madrigal Pharmaceuticals: Other: Stock ownership; Pharmacyclics: Research Funding. Sankaran: Cellarity: Consultancy; Forma: Consultancy; Novartis: Consultancy; Branch Biosciences: Consultancy; Ensoma: Consultancy. Soiffer: Jasper: Consultancy; Jazz Pharmaceuticals, USA: Consultancy; Precision Biosciences, USA: Consultancy; Juno Therapeutics, USA: Other: Data Safety Monitoring Board; Kiadis, Netherlands: Membership on an entity's Board of Directors or advisory committees; Rheos Therapeutics, USA: Consultancy; Gilead, USA: Other: Career Development Award Committee; NMPD - Be the Match, USA: Membership on an entity's Board of Directors or advisory committees; Takeda: Consultancy. Garcia: Genentech: Research Funding; Prelude: Research Funding; Pfizer: Research Funding; AstraZeneca: Research Funding; Takeda: Consultancy, Membership on an entity's Board of Directors or advisory committees; Astellas: Consultancy, Membership on an entity's Board of Directors or advisory committees; AbbVie: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding. Wu: Pharmacyclics: Research Funding; BioNTech: Current equity holder in publicly-traded company. OffLabel Disclosure: ipilimumab to modulate anti-leukemia immunity in the post-transplant and transplant-naive context


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Chih-Yao Chung ◽  
Kritarth Singh ◽  
Vassilios N. Kotiadis ◽  
Gabriel E. Valdebenito ◽  
Jee Hwan Ahn ◽  
...  

AbstractMutations of the mitochondrial genome (mtDNA) cause a range of profoundly debilitating clinical conditions for which treatment options are very limited. Most mtDNA diseases show heteroplasmy – tissues express both wild-type and mutant mtDNA. While the level of heteroplasmy broadly correlates with disease severity, the relationships between specific mtDNA mutations, heteroplasmy, disease phenotype and severity are poorly understood. We have carried out extensive bioenergetic, metabolomic and RNAseq studies on heteroplasmic patient-derived cells carrying the most prevalent disease related mtDNA mutation, the m.3243 A > G. These studies reveal that the mutation promotes changes in metabolites which are associated with the upregulation of the PI3K-Akt-mTORC1 axis in patient-derived cells and tissues. Remarkably, pharmacological inhibition of PI3K, Akt, or mTORC1 reduced mtDNA mutant load and partially rescued cellular bioenergetic function. The PI3K-Akt-mTORC1 axis thus represents a potential therapeutic target that may benefit people suffering from the consequences of the m.3243 A > G mutation.


Sign in / Sign up

Export Citation Format

Share Document