scholarly journals Introducing structure-switching functionality into small-molecule-binding aptamers via nuclease-directed truncation

2018 ◽  
Vol 46 (13) ◽  
pp. e81-e81 ◽  
Author(s):  
Zongwen Wang ◽  
Haixiang Yu ◽  
Juan Canoura ◽  
Yingzhu Liu ◽  
Obtin Alkhamis ◽  
...  
2021 ◽  
Author(s):  
Aimee Alice Sanford ◽  
Alexandra E Rangel ◽  
Trevor A Feagin ◽  
Robert G Lowery ◽  
Hector S Argueta-Gonzalez ◽  
...  

Aptamers are widely employed as recognition elements in small molecule biosensors due to their ability to recognize small molecule targets with high affinity and selectivity. Structure-switching aptamers are particularly promising...


2018 ◽  
Vol 140 (31) ◽  
pp. 9961-9971 ◽  
Author(s):  
Juan Canoura ◽  
Zongwen Wang ◽  
Haixiang Yu ◽  
Obtin Alkhamis ◽  
Fengfu Fu ◽  
...  

2021 ◽  
Author(s):  
Aimee A. Sanford ◽  
Alexandra E. Rangel ◽  
Trevor A. Feagin ◽  
Robert G. Lowery ◽  
Hector Argueta-Gonzalez ◽  
...  

<p><b>ABSTRACT </b></p> <p>Aptamers are widely employed as recognition elements in small molecule biosensors due to their ability to recognize small molecule targets with high affinity and selectivity. Structure-switching aptamers are particularly promising for biosensing applications because target-induced conformational change can be directly linked to an output. However, traditional evolution methods do not select for the significant conformational change needed to create structure-switching biosensors. Modified selection methods have been described to select for structure-switching architectures, but these remain limited by the need for immobilization. Herein we describe the first homogenous, structure-switching aptamer selection that directly reports on biosensor capacity for the target. We exploit the activity of restriction enzymes to isolate aptamer candidates that undergo target-induced displacement of a short complementary strand. As an initial demonstration of the utility of this approach, we performed selection against kanamycin A. Four enriched candidate sequences were successfully characterized as structure-switching biosensors for detection of kanamycin A. Optimization of biosensor conditions afforded facile detection of kanamycin A (90 µM – 10 mM) with high selectivity over three other aminoglycosides. This research demonstrates a general method to directly select for structure-switching biosensors and can be applied to a broad range of small molecule targets.</p>


2021 ◽  
Author(s):  
Aimee A. Sanford ◽  
Alexandra E. Rangel ◽  
Trevor A. Feagin ◽  
Robert G. Lowery ◽  
Hector Argueta-Gonzalez ◽  
...  

<p><b>ABSTRACT </b></p> <p>Aptamers are widely employed as recognition elements in small molecule biosensors due to their ability to recognize small molecule targets with high affinity and selectivity. Structure-switching aptamers are particularly promising for biosensing applications because target-induced conformational change can be directly linked to an output. However, traditional evolution methods do not select for the significant conformational change needed to create structure-switching biosensors. Modified selection methods have been described to select for structure-switching architectures, but these remain limited by the need for immobilization. Herein we describe the first homogenous, structure-switching aptamer selection that directly reports on biosensor capacity for the target. We exploit the activity of restriction enzymes to isolate aptamer candidates that undergo target-induced displacement of a short complementary strand. As an initial demonstration of the utility of this approach, we performed selection against kanamycin A. Four enriched candidate sequences were successfully characterized as structure-switching biosensors for detection of kanamycin A. Optimization of biosensor conditions afforded facile detection of kanamycin A (90 µM – 10 mM) with high selectivity over three other aminoglycosides. This research demonstrates a general method to directly select for structure-switching biosensors and can be applied to a broad range of small molecule targets.</p>


2021 ◽  
Author(s):  
Aimee A. Sanford ◽  
Alexandra E. Rangel ◽  
Trevor A. Feagin ◽  
Robert G. Lowery ◽  
Hector Argueta-Gonzalez ◽  
...  

<p><b>ABSTRACT </b></p> <p>Aptamers are widely employed as recognition elements in small molecule biosensors due to their ability to recognize small molecule targets with high affinity and selectivity. Structure-switching aptamers are particularly promising for biosensing applications because target-induced conformational change can be directly linked to an output. However, traditional evolution methods do not select for the significant conformational change needed to create structure-switching biosensors. Modified selection methods have been described to select for structure-switching architectures, but these remain limited by the need for immobilization. Herein we describe the first homogenous, structure-switching aptamer selection that directly reports on biosensor capacity for the target. We exploit the activity of restriction enzymes to isolate aptamer candidates that undergo target-induced displacement of a short complementary strand. As an initial demonstration of the utility of this approach, we performed selection against kanamycin A. Four enriched candidate sequences were successfully characterized as structure-switching biosensors for detection of kanamycin A. Optimization of biosensor conditions afforded facile detection of kanamycin A (90 µM – 10 mM) with high selectivity over three other aminoglycosides. This research demonstrates a general method to directly select for structure-switching biosensors and can be applied to a broad range of small molecule targets.</p>


2020 ◽  
Vol 8 (43) ◽  
pp. 15135-15141
Author(s):  
Jing Yan ◽  
Yuan-Qiu-Qiang Yi ◽  
Jianqi Zhang ◽  
Huanran Feng ◽  
Yanfeng Ma ◽  
...  

Two non-fullerene small molecule acceptors, NT-4F and NT-4Cl, were designed and synthesized. Power conversion efficiencies of 11.44% and 14.55% were achieved for NT-4Cl-based binary and ternary devices, respectively.


2019 ◽  
Vol 18 (10) ◽  
pp. 739-739 ◽  
Author(s):  
Cara Lepore ◽  
Lynn Silver ◽  
Ursula Theuretzbacher ◽  
Joe Thomas ◽  
David Visi
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document