EPCO-16. ONCOHISTONE INTERACTOME PROFILING UNCOVERS MECHANISMS OF CHROMATIN DISRUPTION AND IDENTIFIES POTENTIAL THERAPEUTIC TARGETS IN PEDIATRIC HIGH-GRADE GLIOMA

2021 ◽  
Vol 23 (Supplement_6) ◽  
pp. vi5-vi5
Author(s):  
Robert Siddaway ◽  
Laura Canty ◽  
Sanja Pajovic ◽  
Etienne Coyaud ◽  
Scott Milos ◽  
...  

Abstract Mutations in histone H3 at amino acids 27 (H3K27M) and 34 (H3G34R) occur with high-frequency in pediatric high-grade glioma. H3K27M mutations have been shown to lead to global disruption of H3K27me3 through dominant negative PRC2 inhibition with accompanying gains in H3K36me3, while H3G34R mutations lead to local losses of H3K36me3 through inhibition of SETD2. However, the mechanism of action of these mutants on the broader landscape of chromatin-associated proteins remains unknown. Importantly, proteins with differential associations with oncohistones could be targeted therapeutically. Here we profiled the interactomes of the H3.1K27M, H3.3K27M and H3.3G34R oncohistones using BioID to gain an unbiased measure of their interaction landscapes. Among the differential interactors all 3 mutants lost interaction with H3K9 methyltransferases, while H3G34R also had reduced interaction with DNA methyltransferases accompanied by genome-wide DNA hypomethylation. In contrast, H3K27M mutants had increased association with transcription factors, consistent with the activation of transcription induced by the global loss of H3K27me3. H3K9me3 was reduced in H3K27M-containing nucleosomes, and cis-H3K9 methylation was required for H3K27M to exert its effect on global H3K27me3. Depletion of H3K9 methyltransferases with shRNA or treatment with H3K9 methyltransferase inhibitors was lethal to H3.1K27M, H3.3K27M and H3.3G34R mutant pHGG cell lines, underscoring the importance of H3K9 methylation for oncohistone-mutant gliomas and suggesting it could make an attractive therapeutic target.

2015 ◽  
Vol 17 (suppl 3) ◽  
pp. iii12-iii12
Author(s):  
C. Lasthaus ◽  
M. Litzler ◽  
C. Bour ◽  
D. Guenot ◽  
N. Entz-Werle

2020 ◽  
Vol 22 (Supplement_3) ◽  
pp. iii351-iii351
Author(s):  
Frank Dubois ◽  
Ofer Shapira ◽  
Noah Greenwald ◽  
Travis Zack ◽  
Jessica W Tsai ◽  
...  

Abstract BACKGROUND Driver single nucleotide variants (SNV) and somatic copy number aberrations (SCNA) of pediatric high-grade glioma (pHGGs), including Diffuse Midline Gliomas (DMGs) are characterized. However, structural variants (SVs) in pHGGs and the mechanisms through which they contribute to glioma formation have not been systematically analyzed genome-wide. METHODS Using SvABA for SVs as well as the latest pipelines for SCNAs and SNVs we analyzed whole-genome sequencing from 174 patients. This includes 60 previously unpublished samples, 43 of which are DMGs. Signature analysis allowed us to define pHGG groups with shared SV characteristics. Significantly recurring SV breakpoints and juxtapositions were identified with algorithms we recently developed and the findings were correlated with RNAseq and H3K27ac ChIPseq. RESULTS The SV characteristics in pHGG showed three groups defined by either complex, intermediate or simple signature activities. These associated with distinct combinations of known driver oncogenes. Our statistical analysis revealed recurring SVs in the topologically associating domains of MYCN, MYC, EGFR, PDGFRA & MET. These correlated with increased mRNA expression and amplification of H3K27ac peaks. Complex recurring amplifications showed characteristics of extrachromosomal amplicons and were enriched in coding SVs splitting protein regulatory from effector domains. Integrative analysis of all SCNAs, SNVs & SVs revealed patterns of characteristic combinations between potential drivers and signatures. This included two distinct groups of H3K27M DMGs with either complex or simple signatures and different combinations of associated variants. CONCLUSION Recurrent SVs associate with signatures shaped by an underlying process, which can lead to distinct mechanisms to activate the same oncogene.


2020 ◽  
Vol 108 (3) ◽  
pp. e239-e240
Author(s):  
L.J. Sudmeier ◽  
T. Morgan ◽  
P. Mendoza ◽  
J. Switchenko ◽  
E. Schreibmann ◽  
...  

2016 ◽  
Vol 18 (suppl 3) ◽  
pp. iii55.2-iii55
Author(s):  
John T. Lucas ◽  
Nick Serrano ◽  
Hyun Kim ◽  
Yimei Li ◽  
Alberto Broniscer ◽  
...  

2019 ◽  
Vol 1 (Supplement_2) ◽  
pp. ii44-ii44
Author(s):  
Yoshihiro Tsukamoto ◽  
Manabu Natsumeda ◽  
Masayasu Okada ◽  
Takeyoshi Eda ◽  
Junichi Yoshimura ◽  
...  

Abstract INTRODUCTION Bevacizumab (BEV) therapy has been used for pediatric high grade glioma,however the evidence and effectiveness are not understood yet. METHODS We report 7 cases (age 2 to 10 years old) of pediatric high grade glioma treated with BEV. One case is thalamic diffuse midline glioma H3K27 mutant (DMGH3K27M),one case is brain stem DMGH3K27M,one case is cerebellar high grade glioma,and 4 cases are diffuse intrinsic pontine glioma (DIPG) diagnosed clinically without biopsy. 5 cases were treated with BEV when diagnosed as recurrence after chemo-radiotherapy. One case was treated for rapid tumor progression during radiotherapy. One case was started on BEV therapy with radiation and concomitant temozolomide therapy. RESULT The number of times of BEV was 2 to 13 times (median 7 times). The period of BEV was 1 to 9 months (median 4 months). One case which was treated with BEV at rapid progression during radiation showed good response on imaging and improvement of symptoms. 4 of 5 cases who were treated at recurrence clinically showed mild symptomatic improvement. One case treated with BEV and radiotherapy initially was not evaluated. The adverse effects of BEV included wound complication of tracheostomy and rash. CONCLUSION BEV showed good response for rapid progression during radiotherapy,and mild response for recurrence cases. BEV is thought to be an effective therapeutic agent for pediatric HGG at recurrence and rapid tumor progression during radiotherapy.


2017 ◽  
Vol 7 ◽  
Author(s):  
Maria J. Williams ◽  
Will G. B. Singleton ◽  
Stephen P. Lowis ◽  
Karim Malik ◽  
Kathreena M. Kurian

Author(s):  
Chitra Sarkar ◽  
Suvendu Purkait ◽  
Pankaj Pathak ◽  
Prerana Jha

Sign in / Sign up

Export Citation Format

Share Document