attractive therapeutic target
Recently Published Documents


TOTAL DOCUMENTS

222
(FIVE YEARS 122)

H-INDEX

30
(FIVE YEARS 8)

2021 ◽  
Author(s):  
Yasuyo Miyagi ◽  
Kyoko Fujiwara ◽  
Keigo Hikishima ◽  
Daisuke Utsumi ◽  
Chiaki Katagiri ◽  
...  

Abstract Evidence has accumulated that higher consumption of high-fat diets (HFDs) during the juvenile/adolescent period induces altered hippocampal function and morphology; however, the mechanism behind this phenomenon remains elusive. Using high-resolution structural imaging combined with molecular and functional interrogation, a murine model of obesity treated with HFDs for 12 weeks after weaning mice was shown to change in the glutamate-mediated intracellular calcium signaling and activity, including further selective reduction of gray matter volume in the hippocampus associated with memory recall disturbance. Dysregulation of intracellular calcium concentrations was restored by a non-competitive α-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor (AMPAR) antagonist, followed by normalization of hippocampal volume and memory recall ability, indicating that AMPARs may serve as an attractive therapeutic target for obesity-associated cognitive decline.


2021 ◽  
Vol 11 (12) ◽  
pp. 1373
Author(s):  
Richard J. Roberts ◽  
Logan Hallee ◽  
Chi Keung Lam

Heat shock protein 90 (Hsp90) is a molecular chaperone that interacts with up to 10% of the proteome. The extensive involvement in protein folding and regulation of protein stability within cells makes Hsp90 an attractive therapeutic target to correct multiple dysfunctions. Many of the clients of Hsp90 are found in pathways known to be pathogenic in the heart, ranging from transforming growth factor β (TGF-β) and mitogen activated kinase (MAPK) signaling to tumor necrosis factor α (TNFα), Gs and Gq g-protein coupled receptor (GPCR) and calcium (Ca2+) signaling. These pathways can therefore be targeted through modulation of Hsp90 activity. The activity of Hsp90 can be targeted through small-molecule inhibition. Small-molecule inhibitors of Hsp90 have been found to be cardiotoxic in some cases however. In this regard, specific targeting of Hsp90 by modulation of post-translational modifications (PTMs) emerges as an attractive strategy. In this review, we aim to address how Hsp90 functions, where Hsp90 interacts within pathological pathways, and current knowledge of small molecules and PTMs known to modulate Hsp90 activity and their potential as therapeutics in cardiac diseases.


Author(s):  
Jiayi Lu ◽  
Bernard Linares ◽  
Zhen Xu ◽  
Yan-Ning Rui

Focal adhesions (FAs) are adhesive organelles that attach cells to the extracellular matrix and can mediate various biological functions in response to different environmental cues. Reduced FAs are often associated with enhanced cell migration and cancer metastasis. In addition, because FAs are essential for preserving vascular integrity, the loss of FAs leads to hemorrhages and is frequently observed in many vascular diseases such as intracranial aneurysms. For these reasons, FAs are an attractive therapeutic target for treating cancer or vascular diseases, two leading causes of death world-wide. FAs are controlled by both their formation and turnover. In comparison to the large body of literature detailing FA formation, the mechanisms of FA turnover are poorly understood. Recently, autophagy has emerged as a major mechanism to degrade FAs and stabilizing FAs by inhibiting autophagy has a beneficial effect on breast cancer metastasis, suggesting autophagy-mediated FA turnover is a promising drug target. Intriguingly, autophagy-mediated FA turnover is a selective process and the cargo receptors for recognizing FAs in this process are context-dependent, which ensures the degradation of specific cargo. This paper mainly reviews the cargo recognition mechanisms of FA-phagy (selective autophagy-mediated FA turnover) and its disease relevance. We seek to outline some new points of understanding that will facilitate further study of FA-phagy and precise therapeutic strategies for related diseases associated with aberrant FA functions.


Nanomaterials ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3163
Author(s):  
Aisha Farhana ◽  
Avin Ee-Hwan Koh ◽  
Pooi Ling Mok ◽  
Abdullah Alsrhani ◽  
Yusuf Saleem Khan ◽  
...  

Cancer progresses through a distinctive reprogramming of metabolic pathways directed by genetic and epigenetic modifications. The hardwired changes induced by genetic mutations are resilient, while epigenetic modifications are softwired and more vulnerable to therapeutic intervention. Colon cancer is no different. This gives us the need to explore the mechanism as an attractive therapeutic target to combat colon cancer cells. We have previously established the enhanced therapeutic efficacy of a newly formulated camptothecin encapsulated in β-cyclodextrin-EDTA-Fe3O4 nanoparticles (CPT-CEF) in colon cancer cells. We furthered this study by carrying out RNA sequencing (RNA-seq) to underscore specific regulatory signatures in the CPT-CEF treated versus untreated HT29 cells. In the study, we identified 95 upregulated and 146 downregulated genes spanning cellular components and molecular and metabolic functions. We carried out extensive bioinformatics analysis to harness genes potentially involved in epigenetic modulation as either the cause or effect of metabolic rewiring exerted by CPT-CEF. Significant downregulation of 13 genes involved in the epigenetic modulation and 40 genes from core metabolism was identified. Three genes, namely, DNMT-1, POLE3, and PKM-2, were identified as the regulatory overlap between epigenetic drivers and metabolic reprogramming in HT29 cells. Based on our results, we propose a possible mechanism that intercepts the two functional axes, namely epigenetic control, and metabolic modulation via CPT-CEF in colon cancer cells, which could skew cancer-induced metabolic deregulation towards metabolic repair. Thus, the study provides avenues for further validation of transcriptomic changes affected by these deregulated genes at epigenetic level, and ultimately may be harnessed as targets for regenerating normal metabolism in colon cancer with better treatment potential, thereby providing new avenues for colon cancer therapy.


2021 ◽  
Author(s):  
María Victoria Castro ◽  
Gastón Barbero ◽  
María Belen Villanueva ◽  
Jérémie Nsengimana ◽  
Julia Newton-Bishop ◽  
...  

Abstract PurposeReceptor tyrosine kinase-like orphan receptor 2 (ROR2) has been shown to play opposite roles in the progression of different tumor types. In melanoma, ROR2 was shown to associate with a more invasive phenotype and to contribute to experimental lung colonization. However, the underlying mechanisms regulated by ROR2 have not been elucidated. More importantly, it has not been established whether ROR2 is just a marker or a driver of melanoma aggressiveness. MethodsGain and loss-of-function experiments were applied to study the biological function of ROR2 in melanoma. Transwell assays and Western blots were used to evaluate cell migration and both expression and activation of Epithelial-Mesenchymal Transition (EMT) markers and signaling proteins. The role of ROR2 in vivo was assessed in xenotransplantation experiments.ResultsWe describe that ROR2 promotes EMT by inducing cadherin switch and the upregulation of the transcription factors ZEB1, Twist, Slug, Snail, and HIF1A, together with a mesenchymal phenotype and increased migration. ROR2 association with EMT is also observed in melanoma samples. ROR2 exerts these effects by hyperactivating the MAPK/ERK pathway far above the typical high constitutive activity observed in melanoma. ROR2 also promoted EMT, invasion, and necrosis in xenotransplanted mice. This important role of ROR2 translates into melanoma patient’s prognosis since patients with lymph node metastasis displaying elevated ROR2 levels have reduced overall survival and distant metastasis-free survival.Conclusions These results demonstrate that ROR2 contributes to melanoma progression by hyperactivating ERK and inducing EMT and necrosis. Thus, ROR2 can be an attractive therapeutic target for metastatic melanoma.


2021 ◽  
Vol 23 (Supplement_6) ◽  
pp. vi5-vi5
Author(s):  
Robert Siddaway ◽  
Laura Canty ◽  
Sanja Pajovic ◽  
Etienne Coyaud ◽  
Scott Milos ◽  
...  

Abstract Mutations in histone H3 at amino acids 27 (H3K27M) and 34 (H3G34R) occur with high-frequency in pediatric high-grade glioma. H3K27M mutations have been shown to lead to global disruption of H3K27me3 through dominant negative PRC2 inhibition with accompanying gains in H3K36me3, while H3G34R mutations lead to local losses of H3K36me3 through inhibition of SETD2. However, the mechanism of action of these mutants on the broader landscape of chromatin-associated proteins remains unknown. Importantly, proteins with differential associations with oncohistones could be targeted therapeutically. Here we profiled the interactomes of the H3.1K27M, H3.3K27M and H3.3G34R oncohistones using BioID to gain an unbiased measure of their interaction landscapes. Among the differential interactors all 3 mutants lost interaction with H3K9 methyltransferases, while H3G34R also had reduced interaction with DNA methyltransferases accompanied by genome-wide DNA hypomethylation. In contrast, H3K27M mutants had increased association with transcription factors, consistent with the activation of transcription induced by the global loss of H3K27me3. H3K9me3 was reduced in H3K27M-containing nucleosomes, and cis-H3K9 methylation was required for H3K27M to exert its effect on global H3K27me3. Depletion of H3K9 methyltransferases with shRNA or treatment with H3K9 methyltransferase inhibitors was lethal to H3.1K27M, H3.3K27M and H3.3G34R mutant pHGG cell lines, underscoring the importance of H3K9 methylation for oncohistone-mutant gliomas and suggesting it could make an attractive therapeutic target.


2021 ◽  
Vol 12 ◽  
Author(s):  
Misa Belser ◽  
David W. Walker

A decline in mitochondrial function has long been associated with age-related health decline. Several lines of evidence suggest that interventions that stimulate mitochondrial autophagy (mitophagy) can slow aging and prolong healthy lifespan. Prohibitins (PHB1 and PHB2) assemble at the mitochondrial inner membrane and are critical for mitochondrial homeostasis. In addition, prohibitins (PHBs) have diverse roles in cell and organismal biology. Here, we will discuss the role of PHBs in mitophagy, oxidative phosphorylation, cellular senescence, and apoptosis. We will also discuss the role of PHBs in modulating lifespan. In addition, we will review the links between PHBs and diseases of aging. Finally, we will discuss the emerging concept that PHBs may represent an attractive therapeutic target to counteract aging and age-onset disease.


2021 ◽  
Vol 22 (21) ◽  
pp. 11444
Author(s):  
Lauren Elizabeth Millichap ◽  
Elisabetta Damiani ◽  
Luca Tiano ◽  
Iain P. Hargreaves

Many neurodegenerative and inherited metabolic diseases frequently compromise nervous system function, and mitochondrial dysfunction and oxidative stress have been implicated as key events leading to neurodegeneration. Mitochondria are essential for neuronal function; however, these organelles are major sources of endogenous reactive oxygen species and are vulnerable targets for oxidative stress-induced damage. The brain is very susceptible to oxidative damage due to its high metabolic demand and low antioxidant defence systems, therefore minimal imbalances in the redox state can result in an oxidative environment that favours tissue damage and activates neuroinflammatory processes. Mitochondrial-associated molecular pathways are often compromised in the pathophysiology of neurodegeneration, including the parkin/PINK1, Nrf2, PGC1α, and PPARγ pathways. Impairments to these signalling pathways consequently effect the removal of dysfunctional mitochondria, which has been suggested as contributing to the development of neurodegeneration. Mitochondrial dysfunction prevention has become an attractive therapeutic target, and there are several molecular pathways that can be pharmacologically targeted to remove damaged mitochondria by inducing mitochondrial biogenesis or mitophagy, as well as increasing the antioxidant capacity of the brain, in order to alleviate mitochondrial dysfunction and prevent the development and progression of neurodegeneration in these disorders. Compounds such as natural polyphenolic compounds, bioactive quinones, and Nrf2 activators have been reported in the literature as novel therapeutic candidates capable of targeting defective mitochondrial pathways in order to improve mitochondrial function and reduce the severity of neurodegeneration in these disorders.


2021 ◽  
Author(s):  
Han-ning Li ◽  
Hui-min Zhang ◽  
Xing-rui Li ◽  
Jun Wang ◽  
Tao Xu ◽  
...  

Abstract Background Papillary thyroid cancer (PTC) is the most common endocrine malignancy, despite marked achieves in recent decades, the mechanisms underlying the pathogenesis and progression for PTC are incomplete. Accumulating evidence shows that γ-glutamylcyclotransferase (GGCT), an enzyme participated in glutathione homeostasis that is elevated in multiple types of tumors, represents an attractive therapeutic target. Methods Bioinformatics, immunohistochemistry (IHC), qRT-PCR and western blot (WB) assays were used to determine the elevation of GGCT in PTC. The biological functions of GGCT were examined using CCK8, wound healing and transwell assays. Subcutaneous xenograft and tail vein pulmonary metastatic mouse models were constructed to determine the effect of GGCT on tumorigenicity and metastasis in vivo. The effect of miR-205-5p on GGCT and the relationship between these two molecules were examined by dual luciferase reporter assay, RNA-RNA pull down assay as well as the rescue experiments both in vitro and in vivo. The interaction between GGCT and CD44 was assessed by co-immunoprecipitation (Co-IP) and IHC assays. Results Our results showed that GGCT expression is upregulated in PTC, correlates with more aggressive clinicopathological characteristics and worse prognosis. GGCT knockdown inhibited the cell proliferation, migratory and invasion ability of PTC cells and reduced the expression of mesenchymal markers (N-cadherin, CD44, MMP-2 and MMP9) while increased epithelial marker (E-cadherin) in PTC cells. We confirmed binding of miR-205-5p on the 3’-UTR regions of GGCT and delivery of miR-205-5p reversed the pro-malignant capacity of GGCT both in vitro and in vivo. Lastly, we found GGCT interacted with and stabilized CD44 in PTC cells. Conclusions Our findings illustrate a novel signaling pathway, miR-205-5p/GGCT/CD44, that involves in the carcinogenesis and progression of PTC. Development of miR-205-mimics or GGCT inhibitors as potential therapeutics for PTC may have remarkable applications.


2021 ◽  
Author(s):  
Qi Zhang ◽  
Peter Radvak ◽  
Juhyung Lee ◽  
Yue Xu ◽  
Vivian Cao-Dao ◽  
...  

Spike-mediated entry of SARS-CoV-2 into human airway epithelial cells is an attractive therapeutic target for COVID-19. In addition to protein receptors, the SARS-CoV-2 spike (S) protein also interacts with heparan sulfate, a negatively charged glycosaminoglycan (GAG) attached to certain membrane proteins on the cell surface. This interaction facilitates the engagement of spike with a downstream receptor to promote viral entry. Here, we show that Mitoxantrone, an FDA-approved topoisomerase inhibitor, targets a spike-GAG complex to compromise the fusogenic function of spike in viral entry. As a single agent, Mitoxantrone inhibits the infection of an authentic SARS-CoV-2 strain in a cell-based model and in human lung EpiAirway 3D tissues. Gene expression profiling supports the plasma membrane as a major target of Mitoxantrone but also underscores an undesired activity targeting nucleosome dynamics. We propose that Mitoxantrone analogs bearing similar GAG-binding activities but with reduced affinity for DNA topoisomerase may offer an alternative therapy to overcome breakthrough infections in the post-vaccine era.


Sign in / Sign up

Export Citation Format

Share Document