scholarly journals TMIC-56. ROLE OF HUMAN BRAIN TUMOR STEM CELLS-DERIVED EXTRACELLULAR VESICLES ON THE PHENOTYPIC TRANSDIFFERENTIATION OF HUMAN NEURAL PROGENITOR CELLS

2019 ◽  
Vol 21 (Supplement_6) ◽  
pp. vi260-vi260
Author(s):  
Natanael Zarco ◽  
Emily Norton ◽  
Montserrat Lara-Velazquez ◽  
Anna Carrano ◽  
Alfredo Quinones-Hinojosa ◽  
...  

Abstract Glioblastoma (GBM) is the most aggressive of all the brain tumors with a median patient survival less than 15 months. Despite of surgical resection, radiotherapy, and chemotherapy, recurrence rate is almost 100%. A great percentage of GBM tumors (~60%) infiltrate and contact the ventricular-subventricular zone (V-SVZ). Interestingly, these tumors are the most aggressive, and invariably lead to higher distal recurrence rates, shorter time to tumor progression, and lower overall survival of the patient. The reason for this role of V-SVZ-proximity on the outcome of GBM patients is unknown. We suggest that a potential explanation is the interaction of GBM with the V-SVZ. This region is the largest neurogenic niche in the adult brain where neural stem cells (NSCs) give rise to newborn neuroblasts that migrate toward the olfactory bulb. In GBM there is a cell subpopulation called brain tumor stem cells (BTSCs) with NSCs-like characteristics, but with added potential for tumor initiation, recurrence and invasiveness. Tumor microenvironment plays an important role in migration and invasion process. In the present work, we used the total exosome isolation kit to purify Extracellular Vesicles (EVs) from human primary cultures of BTSCs. We determined that BTSCs-derived EVs contain specific information that is transfer to primary cultures of human Neural Progenitors Cells (NPCs) modulating their proliferation rate, cell viability, and migration. In addition, we identify that NPCs taken up BTSCs-derived EVs and significantly increase the expression levels of stemness-related genes such as Nestin, Nanog, and Sox2, suggesting that a phenotypic transdifferentiation is being carry out. These results support our hypothesis that GBM modulate the tumor microenvironment close to the V-SVZ by releasing EVs that target cellular components in this region and promote their phenotypic transformation, highlighting that NPCs biology changes in the context of tumor environment.

2010 ◽  
Vol 391 (6) ◽  
Author(s):  
Thomas Palm ◽  
Jens C. Schwamborn

Abstract Since the end of the ‘no-new-neuron’ theory, emerging evidence from multiple studies has supported the existence of stem cells in neurogenic areas of the adult brain. Along with this discovery, neural stem cells became candidate cells being at the origin of brain tumors. In fact, it has been demonstrated that molecular mechanisms controlling self-renewal and differentiation are shared between brain tumor stem cells and neural stem cells and that corruption of genes implicated in these pathways can direct tumor growth. In this regard, future anticancer approaches could be inspired by uncovering such redundancies and setting up treatments leading to exhaustion of the cancer stem cell pool. However, deleterious effects on (normal) neural stem cells should be minimized. Such therapeutic models underline the importance to study the cellular mechanisms implicated in fate decisions of neural stem cells and the oncogenic derivation of adult brain cells. In this review, we discuss the putative origins of brain tumor stem cells and their possible implications on future therapies.


2007 ◽  
Vol 99 (18) ◽  
pp. 1410-1414 ◽  
Author(s):  
Hong Jiang ◽  
Candelaria Gomez-Manzano ◽  
Hiroshi Aoki ◽  
Marta M.. Alonso ◽  
Seiji Kondo ◽  
...  

2008 ◽  
Vol 24 (3-4) ◽  
pp. E27 ◽  
Author(s):  
Rahul Jandial ◽  
Hoisang U ◽  
Michael L. Levy ◽  
Evan Y. Snyder

✓ Recent advances in stem cell research and developmental neurobiology have uncovered new perspectives from which to investigate various forms of cancer. Specifically, the hypothesis that tumors consist of a subpopulation of malignant cells similar to stem cells is of great interest to scientists and clinicians and has been dubbed the “cancer stem cell hypothesis.” The region in which this assertion is most relevant is within the brain. Cancer stem cells have been isolated from brain tumors that exhibit characteristics of differentiation and proliferation normally seen only in neural stem cells. These cancer stem cells may be responsible for tumor origin, survival, and proliferation. Furthermore, these cells must be considered within their immediate microenvironment when investigating mechanisms of tumorigenesis. Evidence of brain tumor stem cells is reviewed along with the role of tumor environment as the context within which these cells should be understood.


Author(s):  
Minomi K. Subapanditha ◽  
Ashley A. Adile ◽  
Chitra Venugopal ◽  
Sheila K. Singh

Author(s):  
N. Sumru Bayin ◽  
Aram S. Modrek ◽  
Dimitris G. Placantonakis

Sign in / Sign up

Export Citation Format

Share Document