stem cell pool
Recently Published Documents


TOTAL DOCUMENTS

185
(FIVE YEARS 32)

H-INDEX

34
(FIVE YEARS 4)

2021 ◽  
Author(s):  
Beverly V. Robinson ◽  
Junnan Fang ◽  
Dipen S. Mehta ◽  
Joseph Buehler ◽  
Dorothy Lerit

To maintain a balance of self-renewal versus neurogenesis, neural stem cells (NSCs) undergo repeated cycles of asymmetric cell division along an invariant polarity axis instructed by centrosomes. During interphase, the NSC centrosomes are defined by marked asymmetries in protein composition and functional activity as microtubule-organizing centers. Here, we show a conserved RNA-binding protein, Orb2, supports centrosome asymmetry in interphase NSCs. While Orb2 localizes to the active apical centrosome, it promotes the transient inactivation of the basal centrosome required for centrosome segregation and spindle morphogenesis. Orb2 is required cell autonomously within NSCs to support centrosome asymmetry and maintenance of the stem cell pool. Conversely, loss of orb2 manifests in microcephaly independent of Orb2 function in NSCs. We suggest Orb2 plays opposing roles in centrosome activation and inactivation, possibly through the translational regulation of multiple mRNA substrates. Bioinformatics uncovers a significant overlap among RNA targets between Drosophila Orb2 and human CPEB4, consistent with a conserved role for CPEB proteins in in centrosome regulation and neurodevelopment.


Author(s):  
Shun-suke Sakai ◽  
Atsushi Hasegawa ◽  
Ryosuke Ishimura ◽  
Naoki Tamura ◽  
Shun Kageyama ◽  
...  

A germline copy number duplication of chromosome 14q32, which contains ATG2B and GSKIP , was identified in families with myeloproliferative neoplasm (MPN). Herein, we show that mice lacking both Atg2b and Gskip , but not either alone, exhibited decreased hematopoiesis, resulting in death in utero accompanied by anemia. In marked contrast to MPN patients with duplication of ATG2B and GSKIP , the number of hematopoietic stem cells (HSCs), in particular long-term HSCs, in double knockout fetal livers were significantly decreased due to increased cell death. Although the remaining HSCs still had the ability to differentiate into hematopoietic progenitor cells, the differentiation efficiency was quite low. Remarkably, mice with knockout of Atg2b or Gskip alone did not show any hematopoietic abnormality. Mechanistically, while loss of both genes had no effect on autophagy, it increased the expression of genes encoding enzymes involved in oxidative phosphorylation. Taken together, our results indicate that Atg2b and Gskip play a synergistic effect in maintaining the pool size of HSCs.


Antioxidants ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1763
Author(s):  
Artem M. Ermakov ◽  
Kristina A. Kamenskikh ◽  
Olga N. Ermakova ◽  
Artem S. Blagodatsky ◽  
Anton L. Popov ◽  
...  

Ionising radiation causes the death of the most actively dividing cells, thus leading to depletion of the stem cell pool. Planarians are invertebrate flatworms that are unique in that their stem cells, called neoblasts, constantly replace old, damaged, or dying cells. Amenability to efficient RNAi treatments, the rapid development of clear phenotypes, and sensitivity to ionising radiation, combined with new genomic technologies, make planarians an outstanding tool for the discovery of potential radioprotective agents. In this work, using the well-known antioxidant N-acetylcysteine, planarians are, for the first time, shown to be an excellent model system for the fast and effective screening of novel radioprotective and radio-sensitising substances. In addition, a panel of measurable parameters that can be used for the study of radioprotective effects on this model is suggested.


2021 ◽  
Author(s):  
Lauren Anllo ◽  
Stephen DiNardo

SummaryTissue homeostasis often requires a properly placed niche to support stem cells. The morphogenetic processes that position a niche are just being described. We recently showed that Drosophila testis pro niche cells, specified at disparate positions during early gonadogenesis, must assemble in one collective at the gonad anterior. Here, we identify Slit and FGF signals emanating from adjacent visceral mesoderm (Vm) that regulate assembly. In response to signaling, niche cells express islet, which we find is also required for positioning the niche. Without signaling, niche cells specified furthest from the anterior are unable to migrate, remaining dispersed. Function of the dispersed niche is severely disrupted, with pro-niche cells evading cell cycle quiescence, compromised in their ability to signal the incipient stem cell pool, and failing to orient stem cell divisions properly. Our work identifies both extrinsic signaling and intrinsic responses required for proper assembly and placement of the testis niche.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Xuan Sun ◽  
Benjamin Cao ◽  
Marina Naval-Sanchez ◽  
Tony Pham ◽  
Yu Bo Yang Sun ◽  
...  

AbstractWith age, hematopoietic stem cells (HSC) undergo changes in function, including reduced regenerative potential and loss of quiescence, which is accompanied by a significant expansion of the stem cell pool that can lead to haematological disorders. Elevated metabolic activity has been implicated in driving the HSC ageing phenotype. Here we show that nicotinamide riboside (NR), a form of vitamin B3, restores youthful metabolic capacity by modifying mitochondrial function in multiple ways including reduced expression of nuclear encoded metabolic pathway genes, damping of mitochondrial stress and a decrease in mitochondrial mass and network-size. Metabolic restoration is dependent on continuous NR supplementation and accompanied by a shift of the aged transcriptome towards the young HSC state, more youthful bone marrow cellular composition and an improved regenerative capacity in a transplant setting. Consequently, NR administration could support healthy ageing by re-establishing a more youthful hematopoietic system.


Development ◽  
2021 ◽  
Vol 148 (9) ◽  
Author(s):  
Guihua Du ◽  
Melissa J. Oatley ◽  
Nathan C. Law ◽  
Colton Robbins ◽  
Xin Wu ◽  
...  

ABSTRACT The stem cell-containing undifferentiated spermatogonial population in mammals, which ensures continual sperm production, arises during development from prospermatogonial precursors. Although a period of quiescence is known to occur in prospermatogonia prior to postnatal spermatogonial transition, the importance of this has not been defined. Here, using mouse models with conditional knockout of the master cell cycle regulator Rb1 to disrupt normal timing of the quiescence period, we found that failure to initiate mitotic arrest during fetal development leads to prospermatogonial apoptosis and germline ablation. Outcomes of single-cell RNA-sequencing analysis indicate that oxidative phosphorylation activity and inhibition of meiotic initiation are disrupted in prospermatogonia that fail to enter quiescence on a normal timeline. Taken together, these findings suggest that key layers of programming are laid down during the quiescent period in prospermatogonia to ensure proper fate specification and fitness in postnatal life.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Costanza Borrelli ◽  
Tomas Valenta ◽  
Kristina Handler ◽  
Karelia Vélez ◽  
Alessandra Gurtner ◽  
...  

AbstractThe homeostasis of the gut epithelium relies upon continuous renewal and proliferation of crypt-resident intestinal epithelial stem cells (IESCs). Wnt/β-catenin signaling is required for IESC maintenance, however, it remains unclear how this pathway selectively governs the identity and proliferative decisions of IESCs. Here, we took advantage of knock-in mice harboring transgenic β-catenin alleles with mutations that specifically impair the recruitment of N- or C-terminal transcriptional co-factors. We show that C-terminally-recruited transcriptional co-factors of β-catenin act as all-or-nothing regulators of Wnt-target gene expression. Blocking their interactions with β-catenin rapidly induces loss of IESCs and intestinal homeostasis. Conversely, N-terminally recruited co-factors fine-tune β-catenin’s transcriptional output to ensure proper self-renewal and proliferative behaviour of IESCs. Impairment of N-terminal interactions triggers transient hyperproliferation of IESCs, eventually resulting in exhaustion of the self-renewing stem cell pool. IESC mis-differentiation, accompanied by unfolded protein response stress and immune infiltration, results in a process resembling aberrant “villisation” of intestinal crypts. Our data suggest that IESC-specific Wnt/β-catenin output requires selective modulation of gene expression by transcriptional co-factors.


Author(s):  
Daniel C.L. Robinson ◽  
Morten Ritso ◽  
Geoffrey M. Nelson ◽  
Zeinab Mokhtari ◽  
Kiran Nakka ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yao Zhang ◽  
Ines Lahmann ◽  
Katharina Baum ◽  
Hiromi Shimojo ◽  
Philippos Mourikis ◽  
...  

AbstractCell-cell interactions mediated by Notch are critical for the maintenance of skeletal muscle stem cells. However, dynamics, cellular source and identity of functional Notch ligands during expansion of the stem cell pool in muscle growth and regeneration remain poorly characterized. Here we demonstrate that oscillating Delta-like 1 (Dll1) produced by myogenic cells is an indispensable Notch ligand for self-renewal of muscle stem cells in mice. Dll1 expression is controlled by the Notch target Hes1 and the muscle regulatory factor MyoD. Consistent with our mathematical model, our experimental analyses show that Hes1 acts as the oscillatory pacemaker, whereas MyoD regulates robust Dll1 expression. Interfering with Dll1 oscillations without changing its overall expression level impairs self-renewal, resulting in premature differentiation of muscle stem cells during muscle growth and regeneration. We conclude that the oscillatory Dll1 input into Notch signaling ensures the equilibrium between self-renewal and differentiation in myogenic cell communities.


Development ◽  
2021 ◽  
Vol 148 (4) ◽  
pp. dev189191
Author(s):  
Toshiyuki Ohtsuka ◽  
Ryoichiro Kageyama

ABSTRACTNeural stem cells (NSCs) gradually alter their characteristics during mammalian neocortical development, resulting in the production of various neurons and glial cells, and remain in the postnatal brain as a source of adult neurogenesis. Notch-Hes signaling is a key regulator of stem cell properties in the developing and postnatal brain, and Hes1 is a major effector that strongly inhibits neuronal differentiation and maintains NSCs. To manipulate Hes1 expression levels in NSCs, we generated transgenic (Tg) mice using the Tet-On system. In Hes1-overexpressing Tg mice, NSCs were maintained in both embryonic and postnatal brains, and generation of later-born neurons was prolonged until later stages in the Tg neocortex. Hes1 overexpression inhibited the production of Tbr2+ intermediate progenitor cells but instead promoted the generation of basal radial glia-like cells in the subventricular zone (SVZ) at late embryonic stages. Furthermore, Hes1-overexpressing Tg mice exhibited the expansion of NSCs and enhanced neurogenesis in the SVZ of adult brain. These results indicate that Hes1 overexpression expanded the embryonic NSC pool and led to the expansion of the NSC reservoir in the postnatal and adult brain.


Sign in / Sign up

Export Citation Format

Share Document