scholarly journals Commentary: Rapid-Stretch Injury to Peripheral Nerves: Histologic Results

Neurosurgery ◽  
2019 ◽  
Author(s):  
Daniel Umansky ◽  
Rajiv Midha
2020 ◽  
Vol 133 (5) ◽  
pp. 1537-1547 ◽  
Author(s):  
Mark A. Mahan ◽  
Wesley S. Warner ◽  
Stewart Yeoh ◽  
Alan Light

OBJECTIVERapid-stretch nerve injuries are among the most devastating lesions to peripheral nerves, yielding unsatisfactory functional outcomes. No animal model has yet been developed that uses only stretch injury for investigation of the pathophysiology of clinical traction injuries. The authors’ objective was to define the behavioral and histopathological recovery after graded rapid-stretch nerve injury.METHODSFour groups of male B6.Cg-Tg(Thy1-YFP)HJrs/J mice were tested: sham injury (n = 11); stretch within elastic limits (elastic group, n = 14); stretch beyond elastic limits but before nerve rupture (inelastic group, n = 14); and stretch-ruptured nerves placed in continuity (rupture group, n = 16). Mice were injured at 8 weeks of age, comparable with human late adolescence. Behavioral outcomes were assessed using the sciatic functional index (SFI), tapered-beam dexterity, Von Frey monofilament testing, and the Hargreaves method. Nerve regeneration outcomes were assessed by wet muscle weight and detailed nerve histology after 48 days.RESULTSPost hoc biomechanical assessment of strain and deformation confirmed that the differences between the elastic and inelastic cohorts were statistically significant. After elastic injury, there was a temporary increase in foot faults on the tapered beam (p < 0.01) and mild reduction in monofilament sensitivity, but no meaningful change in SFI, muscle weight, or nerve histology. For inelastic injuries, there was a profound and maintained decrease in SFI (p < 0.001), but recovery of impairment was observed in tapered-beam and monofilament testing by days 15 and 9, respectively. Histologically, axon counts were reduced (p = 0.04), muscle atrophy was present (p < 0.01), and there was moderate neuroma formation on trichrome and immunofluorescent imaging. Stretch-ruptured nerves healed in continuity but without evidence of regeneration. Substantial and continuous impairment was observed in SFI (p < 0.001), tapered beam (p < 0.01), and monofilament (p < 0.01 until day 48). Axon counts (p < 0.001) and muscle weight (p < 0.0001) were significantly reduced, with little evidence of axonal or myelin regeneration concurrent with neuroma formation on immunofluorescent imaging.CONCLUSIONSThe 3 biomechanical grades of rapid-stretch nerve injuries displayed consistent and distinct behavioral and histopathological outcomes. Stretch within elastic limits resembled neurapraxic injuries, whereas injuries beyond elastic limits demonstrated axonotmesis coupled with impoverished regeneration and recovery. Rupture injuries uniquely failed to regenerate, despite physical continuity of the nerve. This is the first experimental evidence to correlate stretch severity with functional and histological outcomes. Future studies should focus on the pathophysiological mechanisms that reduce regenerative capacity after stretch injury.


Neurosurgery ◽  
2018 ◽  
Vol 85 (1) ◽  
pp. E137-E144
Author(s):  
Mark A Mahan ◽  
Stewart Yeoh ◽  
Ken Monson ◽  
Alan Light

Neurosurgery ◽  
2019 ◽  
Author(s):  
Wesley S Warner ◽  
Stewart Yeoh ◽  
Alan Light ◽  
Jie Zhang ◽  
Mark A Mahan

Author(s):  
D. M. DePace

The majority of blood vessels in the superior cervical ganglion possess a continuous endothelium with tight junctions. These same features have been associated with the blood brain barrier of the central nervous system and peripheral nerves. These vessels may perform a barrier function between the capillary circulation and the superior cervical ganglion. The permeability of the blood vessels in the superior cervical ganglion of the rat was tested by intravenous injection of horseradish peroxidase (HRP). Three experimental groups of four animals each were given intravenous HRP (Sigma Type II) in a dosage of.08 to.15 mg/gm body weight in.5 ml of.85% saline. The animals were sacrificed at five, ten or 15 minutes following administration of the tracer. Superior cervical ganglia were quickly removed and fixed by immersion in 2.5% glutaraldehyde in Sorenson's.1M phosphate buffer, pH 7.4. Three control animals received,5ml of saline without HRP. These were sacrificed on the same time schedule. Tissues from experimental and control animals were reacted for peroxidase activity and then processed for routine transmission electron microscopy.


Author(s):  
Bruce R. Pachter

Diabetes mellitus is one of the commonest causes of neuropathy. Diabetic neuropathy is a heterogeneous group of neuropathic disorders to which patients with diabetes mellitus are susceptible; more than one kind of neuropathy can frequently occur in the same individual. Abnormalities are also known to occur in nearly every anatomic subdivision of the eye in diabetic patients. Oculomotor palsy appears to be common in diabetes mellitus for their occurrence in isolation to suggest diabetes. Nerves to the external ocular muscles are most commonly affected, particularly the oculomotor or third cranial nerve. The third nerve palsy of diabetes is characteristic, being of sudden onset, accompanied by orbital and retro-orbital pain, often associated with complete involvement of the external ocular muscles innervated by the nerve. While the human and experimental animal literature is replete with studies on the peripheral nerves in diabetes mellitus, there is but a paucity of reported studies dealing with the oculomotor nerves and their associated extraocular muscles (EOMs).


Author(s):  
John L. Beggs ◽  
Peter C. Johnson ◽  
Astrid G. Olafsen ◽  
C. Jane Watkins

The blood supply (vasa nervorum) to peripheral nerves is composed of an interconnected dual circulation. The endoneurium of nerve fascicles is maintained by the intrinsic circulation which is composed of microvessels primarily of capillary caliber. Transperineurial arterioles link the intrinsic circulation with the extrinsic arterial supply located in the epineurium. Blood flow in the vasa nervorum is neurogenically influenced (1,2). Although a recent hypothesis proposes that endoneurial blood flow is controlled by the action of autonomic nerve fibers associated with epineurial arterioles (2), our recent studies (3) show that in addition to epineurial arterioles other segments of the vasa nervorum are also innervated. In this study, we examine blood vessels of the endoneurium for possible innervation.


2004 ◽  
Vol 1 (2) ◽  
pp. 21-23 ◽  
Author(s):  
Dhaval P Shukla ◽  
D.I. Bhat ◽  
B. Indira Devi ◽  
M.S. Gopalakrishnan ◽  
Aliasgar Moiyadi
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document