scholarly journals Measuring Stocking in Northern Red Oak Stands in Wisconsin

1999 ◽  
Vol 16 (3) ◽  
pp. 144-150 ◽  
Author(s):  
David W. McGill ◽  
Robert Rogers ◽  
A. Jeff Martin ◽  
Paul S. Johnson

Abstract Stocking equations and charts for stands dominated by northern red oak were developed from data collected on 66 plots in 52 northern red oak stands in Wisconsin. In all plots, northern red oak was the dominant species. Tolerant species such as sugar maple and red maple usually formed a subcanopy. We used the tree-area ratio method for measuring stocking. However, we treated the tolerant subcanopy as a separate component of stocking. This facilitated defining average maximum relative stand density (100% stocking)for the main canopy or the main canopy and subcanopy combined.This approach is based on the assumption that shade tolerant species can exploit resources in spatial strata that are unexploited by the mid-tolerant red oak. The resulting stocking equations and charts can provide an objective basis for evaluating stocking of northern red oak stands in Wisconsin.North. J. Appl. For. 16(3):144-150.

1996 ◽  
Vol 13 (4) ◽  
pp. 182-188 ◽  
Author(s):  
Patrick J. Guertin ◽  
C. W. Ramm

Abstract Five-year diameter growth, basal area growth, and mortality for five upland hardwood species in northern Lower Michigan were compared to projections from Lake States TWIGS. The species studied were northern red oak, white oak, other red oak (pin oak and black oak combined), sugar maple, and red maple. The validation data consisted of individual tree measurements from 44 stands across 10 ecological land types on the Manistee National Forest. The stands were measured in 1986 and 1991; during this time interval stands experienced a drought and outbreaks of leaf defoliators. For individual dbh classes, 5 yr diameter growth was predicted within ± 0.3 in. for all species. Mean errors for BA projections were within ± 5 ft²/ac for all species, and mean error for trees/ac ranged from - 33 for other red oak to + 16 for sugar maple. Although precision was variable, Lake States TWIGS provided accurate predictions of 5 yr diameter growth for the five species tested. Projections of mortality were less accurate. North. J. Appl. For. 13(4):00-00.


2007 ◽  
Vol 24 (2) ◽  
pp. 146-148 ◽  
Author(s):  
William Luppold ◽  
Delton Alderman

Abstract Over the last 40 years the composition of West Virginia forests has been changing as selective cutting practices have removed larger-diameter timber of specific species and partial canopy removal has fostered the regeneration of shade-tolerant species such as red maple. However, since the mid-1990s there has been considerable change in the number of markets accepting lower-quality and smaller-diameter roundwood, especially yellow-poplar. These changes have increased the number of roundwood markets and thus have increased the potential for harvesting based on silvicultural objectives or clearcuts. An examination of harvesting and merchandising practices for 28 harvest sites in West Virginia found an average of four merchandising separations or markets per site. Although the presence of new markets may have increased the section of sites containing yellow-poplar and the removal of this species from these sites, the continuation of diameter-limit cutting seems to have the greatest effect on which trees are removed. This pattern of partial harvests continues to favor the regeneration of shade-tolerant species such as red and sugar maple.


2004 ◽  
Vol 34 (5) ◽  
pp. 985-997 ◽  
Author(s):  
Thomas M Schuler

Long-term silvicultural trials contribute to sustainable forest management by providing a better scientific understanding of how forest ecosystems respond to periodic timber harvesting. In this study, species composition, diversity, and net periodic growth of tree species in a mixed mesophytic forest in the central Appalachians were evaluated after about a half century of management. Three partial cutting practices on 18 research compartments and on 3 unmanaged reference compartments were evaluated (1951–2001) on 280 ha. Single-tree selection, diameter-limit harvesting, and timber harvesting in 0.162-ha patches were assessed on three northern red oak site index50 (SI) classes: 24, 21, and 18. Shannon–Weiner's diversity index (H′) declined from the first (1951–1959) to last (1987–2001) measurements and was related to both SI (P = 0.004) and treatment (P = 0.009). Sugar maple (Acer saccharum Marsh.) and red maple (Acer rubrum L.) were the two most abundant species in recent years (1987–2001); in contrast, in initial inventories (1951–1959), northern red oak (Quercus rubra L.) and chestnut oak (Quercus prinus L.) were most abundant. Net periodic annual increment (PAI) of merchantable trees (DBH ≥12.7 cm) was related to both SI (P = 0.004) and treatment (P = 0.003). Mean PAI ranged from 4.6 m3·ha–1·year–1 for single-tree selection to 2.5 m3·ha–1·year–1 for unmanaged reference areas across all SI classes. The decline of oak species suggests that only intensive and specific forest management focused on maintaining oak species can obtain historical levels of diversity.


1988 ◽  
Vol 12 (1) ◽  
pp. 23-27 ◽  
Author(s):  
Neil I. Lamson

Abstract In northern West Virginia, 7-year-old American basswood (Tilia americana L.) and 12-year-old red maple (Acer rubrum L.), black cherry (Prunus serotina Ehrh.), and northern red oak (Quercus rubra L.) stump sprout clumps received one of four treatments: unthinned control; thinned to the best one or two codominant sprouts per clump; branch pruned up to 75% of total height; or thinned plus pruned. Analysis of 10-year growth data showed that height growth was not affected by any of the treatments. For all species, pruning slightly increased the length of clear stem and decreased periodic diameter growth. Thinning increased survival of basswood, red oak, and red maple crop stems. Thinning increased the 10-year diameter growth by 0.1 to 0.8 in. Recommendations for thinning 10- to 20-year-old sprout clumps are presented. Pruning is not recommended. In order to maintain maximum diameter growth, thinning individual sprout clumps should be followed by stand crop tree release in about 10 years. South. J. Appl. For. 12(1):23-27.


2003 ◽  
Vol 27 (4) ◽  
pp. 264-268 ◽  
Author(s):  
Eric Heitzman

Abstract Since 1999, widespread and locally severe oak decline and mortality have occurred throughout the Ozark Mountains of northern Arkansas and southern Missouri. A contributing factor in the decline and mortality is an outbreak of the red oak borer [Enaphalodes rufulus (Haldeman) (Coleoptera: Cerambycidae)]. In northern Arkansas, a 2,150 ac mature oak forest severely affected by decline was selected as a case study to describe changes in species composition and stand structure and to assess regeneration potential of oaks and non-oak species. Mortality reduced total overstory basal area from 105 to 57 ft2/ac, and overstory density decreased from 156 to 89 trees/ac. Most dead and dying trees were northern red oak (Quercus rubra L.) and black oak (Q. velutina Lam.). Basal area and density of overstory red oaks were reduced from 51 to 11 ft2/ac and from 60 to 11 trees/ac, respectively. These trees died regardless of dbh class. Mortality was less common in white oak (Q. alba L.) and was generally limited to smaller trees. Understory trees and taller seedlings were predominantly red maple (Acer rubrum L.), flowering dogwood (Cornus florida L.), blackgum (Nyssa sylvatica Marsh.), and black cherry (Prunus serotina Ehrh.). Oaks less than 3 ft tall were abundant, but taller oak seedlings and saplings were uncommon. Tree mortality increased the proportion of white oak and hickories (Carya spp.) in the overstory, and stimulated a regeneration response of mostly non-oak species. South. J. Appl. For. 27(4):264–268.


Forests ◽  
2019 ◽  
Vol 10 (7) ◽  
pp. 547
Author(s):  
Kaile Mai ◽  
Roger A. Williams

Oak regeneration failures have been causing a slow decline in the occurrence of oak forest ecosystems in eastern North America. Accordingly, our study sought to determine a means of creating more vigorous and competitive oak seedlings by the addition of manganese (Mn) fertilizers. Seeds of northern red oak (Quercus rubra L.), chestnut oak (Quercus prinus L.), and red maple (Acer rubrum L.), one of oak’s major competitors in North America oak forest ecosystems, were sown in 0.7 liter pots that contained a growing medium mixture of peat moss, perlite, and sand in a ratio of 2:1:2, and germinated in a greenhouse. Three different chemical compound Mn fertilizer treatments—manganese chloride (0.16 mg L−1 Mn, MnCl2·4H2O), nanoparticle manganese in the form of manganese hydroxide (0.01 mg/L Mn, nanoparticle Mn(OH)2), and manganese hydroxide (0.01 mg L−1 Mn, Mn(OH)2)—and a treatment of Hoagland solution were applied to the planted seed. These treatments were compared to a control consisting of water, and treatments were applied twice a week over a 12 week period. Germination rates and seedling growth were measured over this period of time. At the end of 12 weeks seedlings were harvested, separated into roots, stem, and foliage for the purpose of biomass and nutrient analysis by seedling component. Northern red oak displayed a 100% germination success rate with MnCl2·4H2O and Mn(OH)2 treatments, while red maple germination was reduced with the MnCl2·4H2O and nanoparticle Mn(OH)2 treatments with only a 32% and 24% germination rate, respectively. The MnCl2·4H2O treatment produced the largest overall seedling size (basal diameter squared times the seedling height) of red maple with a 191.6% increase; however, the MnCl2·4H2O treatment produced the largest overall seedling size (basal diameter squared times the seedling height) of northern red oak and chestnut oak with an increase of 503.7% and 339.5%, respectively. The greatest increase in overall seedling size for northern red oak was with the Mn(OH)2 treatment at 507.2%, and 601.2% for chestnut oak with the nanoparticle Mn(OH)2 treatment. MnCl2·4H2O treatment significantly increased the oak foliar nitrogen (N) content. It appears that the application of Mn fertilizer can increase the germination and growth of these oak species while suppressing or having a lesser effect on red maple, thus creating a competitive advantage for oak over its competitor.


2002 ◽  
Vol 20 (3) ◽  
pp. 175-180 ◽  
Author(s):  
Scott W. Ludwig ◽  
Laura Lazarus ◽  
Deborah G. McCullough ◽  
Kelli Hoover ◽  
Silvia Montero ◽  
...  

Abstract Two procedures were evaluated for assessing tree susceptibility to Anoplophora glabripennis. In the first procedure, adult beetles were caged with a section of sugar maple, northern red oak, white oak, honeylocust, eastern cottonwood, sycamore or tulip poplar wood. Results showed that females laid viable eggs on sugar maple, red oak, white oak and honeylocust. Oviposition did not occur on cottonwood, sycamore, or tulip poplar. Eighty-seven percent of the first instar larvae survived in white oak, followed by sugar maple (82%), honeylocust (50%), and red oak (39%). In the second procedure, first instar larvae were manually inserted into potted sugar maple, green ash, and red oak trees and allowed to feed for 60 or 90 days. Significantly more larvae survived for 90 days within the red oak (67%) compared to green ash (17%). Larvae recovered from red oak weighed significantly more than larvae from sugar maple or green ash. Larval survival was positively related to height of insertion. These results indicate: 1) controlled laboratory and greenhouse-based procedures can be used to assess tree suitability to A. glabripennis and 2) A. glabripennis will oviposit and larvae can develop in northern red oak for up to 90 days, suggesting that this species may be a potential host.


1987 ◽  
Vol 4 (4) ◽  
pp. 212-212 ◽  
Author(s):  
Harry V. Wiant ◽  
Thomas B. Williams

Abstract Coefficients are provided for estimating dbh from stump measurements and estimating diameter and volume from groundline to dbh for northern red oak, white oak, red maple, and yellow-poplar. North. J. Appl. For. 4:212, December 1987.


1998 ◽  
Vol 15 (3) ◽  
pp. 116-123 ◽  
Author(s):  
Peter N. Bakken ◽  
James E. Cook

Abstract The arboreal regeneration of 24 mature, fully stocked forests distributed among 6 common habitat types (Kotar et al. 1988) in north-central Wisconsin were studied. Nineteen of the stands were inventoried in 1992 and 1993; in 1993 an additional 5 stands were included. The density and composition of small (<25 cm) and large (25-150 cm) seedlings were determined, and the relationships of the understory and overstory were investigated. No significant (P < 0.05) differences were found for seedling densities of either size class among habitat types. This was due, in part, to the large variation within most habitat types; this in turn is primarily a function of the temporally variable nature of seedlings. The average densities per habitat type ranged from 3,125-20,200/ha for large seedlings and from 20,208-152,083/ha for the small seedlings. Red and sugar maple strongly dominated the regeneration. Red maple was the most common (88-96%) species in the small seedling size class on the three driest habitat types, and sugar maple (88-99%) on the two most mesic habitat types. In the middle of the site quality gradient, the two maples shared dominance with northern red oak. The level of maple dominance was lower in the large seedling class, ranging from 53-93%. The small seedling size class was significantly related to the amount of maple basal area each year, but the strength of this relationship weakened from 1992 to 1993. The widespread domination by red and sugar maple is a function of their regeneration ecology, shade tolerance, fire suppression, and deer browsing. The seedling composition and densities have important implications for the management of these forests. The regeneration and overstory characteristics suggest that it would be easiest to direct the composition one of several ways on the PMV and AVVib habitat types. Fairly heavy overstory treatments, in conjunction with seedbed preparation, are probably necessary to regenerate significant amounts of species other than sugar maple on the two most mesic habitat types. North. J. Appl. For. 15(3):116-123.


Sign in / Sign up

Export Citation Format

Share Document