seedling size
Recently Published Documents


TOTAL DOCUMENTS

81
(FIVE YEARS 10)

H-INDEX

17
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Jiaxi Wang ◽  
Mercedes Uscola ◽  
Guolei Li

Abstract Aims Soil fertility and resorption of leaf compounds in the fall can influence resource buildup in plants. However, whether intraspecific differences in seedling size can affect nutrient reserve buildup is unknown. This study examined the effects of seedling size and fall fertilization on the uptake and resorption of nitrogen (N), as well as the allocation of non-structural carbohydrates (NSC) and N in cultivated Quercus variabilis Blume. Methods After the formation of terminal buds (T1), seedlings were stratified into small (shoot height < 30 cm) and large seedlings. During the hardening period, seedlings were treated with three different rates of 15N-enriched fertilizer (0, 12, or 24 mg N seedling− 1) and monitored until leaf fall (T2). Results Small seedlings had lower N resorption efficiency and resorbed proportionally less N than large seedlings. Fall fertilization notably improved N and NSC reserves, without reducing N resorption efficiency. Large seedlings allocated proportionally less N to leaves than small seedlings although both sizes seedlings absorbed similar amounts of N from fall fertilization. The priority perennial organ for NSC allocation was roots, while N allocation was dependent on the phenological growth stage of the seedling. Roots were prioritized during the rapid growth phase, while stems were prioritized during the hardening period. Conclusions Under same fertilizer regime during the growth phase, large seedlings tends to have lower N concentration and have higher resorption efficiency compare to small seedlings, fall fertilization can increase N storage in large seedlings and NSC levels in both seedling sizes, without affecting growth.


2020 ◽  
Vol 30 (5) ◽  
pp. 585-592
Author(s):  
Samuel Doty ◽  
Ryan W. Dickson ◽  
Michael Evans

Ornamental bedding plant operations transitioning to leafy greens and herb production must decide whether to invest in new hydroponic equipment or modify existing culture systems for edible crops. In addition, common practices used to increase space-use and production efficiencies during bedding plant production may be modified for hydroponic leafy greens and herbs, such as purchasing large seedlings for transplant. The objective of the first experiment was to evaluate plant growth in a modified and novel shallow aggregate ebb-and-flood (SAEF) system intended for bedding plant growers with an emphasis on comparing yield across four basil (Ocimum basilicum) cultivars grown in the SAEF system to those grown using the traditional nutrient film technique (NFT) and deep water culture (DWC) hydroponic systems. The second experiment objective was to evaluate basil seedling size and the time of transplant to NFT hydroponic systems to determine effects on the final yield. ‘Genovese’ basil seedlings were grown in trays with cell counts of 32, 50, 72, 105, and 162 cells with corresponding root volumes per plant of 98.1, 50.2, 38.5, 19.6, and 16.3 cm3, respectively. Seedlings were transplanted to NFT systems at 14, 21, and 28 days after sowing and were harvested at 35 days. In the first experiment, overall basil shoot fresh and dry weights per plant were intermediate in the SAEF system (90.4 and 8.3 g) compared with the DWC (102.6 and 9.1 g) and NFT (75.8 and 6.6 g) hydroponic systems. In the second experiment, final shoot fresh and dry weight per plant increased as seedling root volume increased from 16.3 cm3 [72.8 and 5.5 g (162-cell tray)] to 98.1 cm3 [148.5 and 12.2 g (32-cell tray)]. Transplanting seedlings at later dates decreased yield across tray size and root volume treatments. Differences in yield between culture systems may have resulted from differences in nutrient supply and availability for plant uptake. Transplant of large seedling plugs to hydroponic culture was not shown to increase space-use efficiency after transplant without compromising yield, likely because root zone factors limited growth during seedling production. Further investigation into maximizing plant growth during seedling production and evaluating the effects of seedling size and transplant practices are needed to determine the potential for increasing space-use and production efficiencies.


Forests ◽  
2020 ◽  
Vol 11 (9) ◽  
pp. 924 ◽  
Author(s):  
Guillermo Castilla ◽  
Michelle Filiatrault ◽  
Gregory J. McDermid ◽  
Michael Gartrell

Research Highlights: This is the most comprehensive analysis to date of the accuracy of height estimates for individual conifer seedlings derived from drone-based image point clouds (DIPCs). We provide insights into the effects on accuracy of ground sampling distance (GSD), phenology, ground determination method, seedling size, and more. Background and Objectives: Regeneration success in disturbed forests involves costly ground surveys of tree seedlings exceeding a minimum height. Here we assess the accuracy with which conifer seedling height can be estimated using drones, and how height errors translate into counting errors in stocking surveys. Materials and Methods: We compared height estimates derived from DIPCs of different GSD (0.35 cm, 0.75 cm, and 3 cm), phenological state (leaf-on and leaf-off), and ground determination method (based on either the DIPC itself or an ancillary digital terrain model). Each set of height estimates came from data acquired in up to three linear disturbances in the boreal forest of Alberta, Canada, and included 22 to 189 surveyed seedlings, which were split into two height strata to assess two survey scenarios. Results: The best result (root mean square error (RMSE) = 24 cm; bias = −11 cm; R2 = 0.63; n = 48) was achieved for seedlings >30 cm with 0.35 cm GSD in leaf-off conditions and ground elevation from the DIPC. The second-best result had the same GSD and ground method but was leaf-on and not significantly different from the first. Results for seedlings ≤30 cm were unreliable (nil R2). Height estimates derived from manual softcopy interpretation were similar to the corresponding DIPC results. Height estimation errors hardly affected seedling counting errors (best balance was 8% omission and 6% commission). Accuracy and correlation were stronger at finer GSDs and improved with seedling size. Conclusions: Millimetric (GSD <1 cm) DIPC can be used for estimating the height of individual conifer seedlings taller than 30 cm.


2020 ◽  
Vol 36 (3) ◽  
pp. 115-122
Author(s):  
Alejandra I. Domic ◽  
José M. Capriles ◽  
Gerardo R. Camilo

AbstractIn vascular plants, larger seeds are generally associated with higher germination potential, healthier seedlings and overall higher rates of survivorship. How this relationship holds or what other physiological tradeoffs evolved in plants adapted to high-altitude environments, such as the tropical and subtropical highland Polylepis tree, remain unclear. In this study, we evaluated the relationship between seed mass and seedling performance by testing the reserve effect, the metabolic effect, and the seedling-size effect hypotheses in Polylepis tomentella Weddell (Rosaceae). Since the relationship between fitness and seed size can often depend on maternal plant size, we additionally investigated the association between germination success, seedling performance (survival, relative growth rate (RGR) and height), and size of bearing-seed trees under controlled greenhouse conditions. Our results showed that heavier seeds are more likely to germinate, but we did not find evidence that could support the reserve effect, metabolic effect or seedling-size effect. As seedlings from larger and medium seeds exhibited comparatively similar RGR, survival percentages and final size, maternal plant size was positively associated with improved seed quality and seedling performance. These results demonstrate that seed mass and maternal size during early seedling establishment are critical for Polylepis persistence, demography and conservation.


2020 ◽  
Vol 35 (1-2) ◽  
pp. 29-45
Author(s):  
Kyle D. Le ◽  
Stefan G. Schreiber ◽  
Simon M. Landhäusser ◽  
Amanda L. Schoonmaker

Forests ◽  
2019 ◽  
Vol 10 (12) ◽  
pp. 1070
Author(s):  
Songheng Jin ◽  
Brett Moule ◽  
Dapao Yu ◽  
G. Geoff Wang

Longleaf pine (Pinus palustris Mill.) forest is a well-known fire-dependent ecosystem. The historical dominance of longleaf pine in the southeast United States has been attributed to its adaptation known as the grass stage, which allows longleaf pine seedlings to survive under a frequent surface fire regime. However, factors affecting post-fire survival of grass stage seedlings are not well understood. In this study, we measured live and dead longleaf pine grass stage seedlings to quantify the role of seedling size, root collar position, and sprouting in seedling survival following a wildfire in the sandhills of South Carolina. We found that fire resulted in almost 50% mortality for longleaf pine grass stage seedlings. Fire survival rate increased with seedling size, but a size threshold for fire tolerance was not supported. Fire survival depended on the position of root collar relative to the mineral soil. Seedlings with protected root collars (i.e., buried in or at the level of mineral soil) experienced <21%, while seedlings with exposed root collars (i.e., elevated above mineral soil) suffered >90% post-fire mortality. Ability to resprout contributed to 45.6% of the total fire survival, with the small seedlings (root collar diameter (RCD) < 7.6 mm) almost exclusively depending on resprouting. Our findings had significant implications for fire management in longleaf pine ecosystems, and the current frequency of prescribed fire in sandhills might need to be lengthened to facilitate longleaf pine natural regeneration.


Author(s):  
D.M. Heid ◽  
N.A.H. Zárate ◽  
E.P. Torales ◽  
L.L. Luqui ◽  
L.B. Moreno ◽  
...  
Keyword(s):  

Forests ◽  
2019 ◽  
Vol 10 (7) ◽  
pp. 547
Author(s):  
Kaile Mai ◽  
Roger A. Williams

Oak regeneration failures have been causing a slow decline in the occurrence of oak forest ecosystems in eastern North America. Accordingly, our study sought to determine a means of creating more vigorous and competitive oak seedlings by the addition of manganese (Mn) fertilizers. Seeds of northern red oak (Quercus rubra L.), chestnut oak (Quercus prinus L.), and red maple (Acer rubrum L.), one of oak’s major competitors in North America oak forest ecosystems, were sown in 0.7 liter pots that contained a growing medium mixture of peat moss, perlite, and sand in a ratio of 2:1:2, and germinated in a greenhouse. Three different chemical compound Mn fertilizer treatments—manganese chloride (0.16 mg L−1 Mn, MnCl2·4H2O), nanoparticle manganese in the form of manganese hydroxide (0.01 mg/L Mn, nanoparticle Mn(OH)2), and manganese hydroxide (0.01 mg L−1 Mn, Mn(OH)2)—and a treatment of Hoagland solution were applied to the planted seed. These treatments were compared to a control consisting of water, and treatments were applied twice a week over a 12 week period. Germination rates and seedling growth were measured over this period of time. At the end of 12 weeks seedlings were harvested, separated into roots, stem, and foliage for the purpose of biomass and nutrient analysis by seedling component. Northern red oak displayed a 100% germination success rate with MnCl2·4H2O and Mn(OH)2 treatments, while red maple germination was reduced with the MnCl2·4H2O and nanoparticle Mn(OH)2 treatments with only a 32% and 24% germination rate, respectively. The MnCl2·4H2O treatment produced the largest overall seedling size (basal diameter squared times the seedling height) of red maple with a 191.6% increase; however, the MnCl2·4H2O treatment produced the largest overall seedling size (basal diameter squared times the seedling height) of northern red oak and chestnut oak with an increase of 503.7% and 339.5%, respectively. The greatest increase in overall seedling size for northern red oak was with the Mn(OH)2 treatment at 507.2%, and 601.2% for chestnut oak with the nanoparticle Mn(OH)2 treatment. MnCl2·4H2O treatment significantly increased the oak foliar nitrogen (N) content. It appears that the application of Mn fertilizer can increase the germination and growth of these oak species while suppressing or having a lesser effect on red maple, thus creating a competitive advantage for oak over its competitor.


2019 ◽  
Vol 12 (2) ◽  
pp. 220-225
Author(s):  
JA Oliet ◽  
E Ortiz de Urbina ◽  
M Sánchez-Pinillos ◽  
G Tardío-Cerrillo
Keyword(s):  

Plants ◽  
2019 ◽  
Vol 8 (2) ◽  
pp. 27 ◽  
Author(s):  
Natividad Chaves Lobón ◽  
Irene Ferrer de la Cruz ◽  
Juan Alías Gallego

Cistus ladanifer has been described as an allelopathic and autoallelopathic species, and the compounds that could be involved in its autotoxicity are the flavonoids and diterpenes present in the exudate of its leaves. The aim of this study was to determine which family of compounds, either phenols or terpenes, are responsible for the autoallelopathic activity quantified in C. ladanifer. These compounds were extracted from the exudate of young leaves collected in spring and separated by column chromatography into two fractions: diterpenes and flavonoids. The obtained results showed that flavonoids, at the tested concentrations, did not have a negative effect on any of the parameters quantified in the germination process of C. ladanifer seeds. On the other hand, the germination, seedling size and seedling establishment, quantified through the germination index and rate, were negatively affected by the tested diterpene solutions. In view of the obtained results, it was concluded that the compounds involved in the autoallelopathy process of C. ladanifer are diterpenes.


Sign in / Sign up

Export Citation Format

Share Document