scholarly journals Graphdiyne based metal atomic catalysts for synthesizing ammonia

Author(s):  
Huidi Yu ◽  
Yurui Xue ◽  
Lan Hui ◽  
Chao Zhang ◽  
Yan Fang ◽  
...  

Abstract Exploring new catalysts for nitrogen reduction at ambient pressures and temperatures with ultrahigh ammonia (NH3) yield and selectivity is still a giant challenge. In this work, atomic catalysts with separated Pd atoms on graphdiyne (Pd-GDY) have been synthesized and show fascinating electrocatalytic properties for nitrogen reduction. Outstandingly, the catalyst shows the highest average NH3 yield of 4.45 ± 0.30 mgNH3 mgPd−1 h−1, almost tens of orders larger than previously reported ones, and 100% reaction selectivity in neutral media. And Pd-GDY exhibits almost no decreases in the NH3 yield and Faradaic efficiency. Density functional theory calculations show that the reaction pathway prefers to perform at the (Pd, C1, C2) active area due to the strongly coupled (Pd, C1, C2) which elevates the selectivity via enhanced electron-transfer. By adjusting the p-d coupling accurately, the reduction of self-activated nitrogen is promoted by anchoring atom selection, and the side effects are minimized.

2020 ◽  
Vol 8 (39) ◽  
pp. 20402-20407
Author(s):  
Yujin Ji ◽  
Yifan Li ◽  
Huilong Dong ◽  
Lifeng Ding ◽  
Youyong Li

Grand canonical density functional theory calculations reveal that the Ru–N4 motif is the superior catalytic site for eNRR rather than the Ru–N3 motif.


2017 ◽  
Vol 72 (11) ◽  
pp. 839-846
Author(s):  
Sebastian Plebst ◽  
Martina Bubrin ◽  
David Schweinfurth ◽  
Stanislav Záliš ◽  
Wolfgang Kaim

AbstractThe compounds [W(CO)5(btd)], [W(CO)5(bsd] and [Re(CO)3(bpy)(bsd)](BF4), btd=2,1,3-benzothiadiazole and bsd=2,1,3-benzoselenadiazole were isolated and characterized experimentally (crystal structure, spectroscopy, spectroelectrochemistry) and by density functional theory calculations. The results confirm single N-coordination in all cases, binding to Se was calculated to be less favorable. Studies of one-electron reduced forms indicate that the N-coordination is maintained during electron transfer.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Zhen-Yu Wu ◽  
Mohammadreza Karamad ◽  
Xue Yong ◽  
Qizheng Huang ◽  
David A. Cullen ◽  
...  

AbstractElectrochemically converting nitrate, a widespread water pollutant, back to valuable ammonia is a green and delocalized route for ammonia synthesis, and can be an appealing and supplementary alternative to the Haber-Bosch process. However, as there are other nitrate reduction pathways present, selectively guiding the reaction pathway towards ammonia is currently challenged by the lack of efficient catalysts. Here we report a selective and active nitrate reduction to ammonia on Fe single atom catalyst, with a maximal ammonia Faradaic efficiency of ~ 75% and a yield rate of up to ~ 20,000 μg h−1 mgcat.−1 (0.46 mmol h−1 cm−2). Our Fe single atom catalyst can effectively prevent the N-N coupling step required for N2 due to the lack of neighboring metal sites, promoting ammonia product selectivity. Density functional theory calculations reveal the reaction mechanisms and the potential limiting steps for nitrate reduction on atomically dispersed Fe sites.


1995 ◽  
Vol 103 (6) ◽  
pp. 2102-2108 ◽  
Author(s):  
Ewa Broclawik ◽  
Hiroaki Himei ◽  
Michiyuki Yamadaya ◽  
Momoji Kubo ◽  
Akira Miyamoto ◽  
...  

2019 ◽  
Vol 44 (1) ◽  
pp. 67-73 ◽  
Author(s):  
Ying-Ying Wang

By performing density functional theory calculations, the adsorption configurations of formic acid and possible reaction pathway for HCOOH oxidation on PtPd(111) surface are located. Results show that CO2 is preferentially formed as the main product of the catalytic oxidation of formic acid. The formation of CO on the pure Pd surface could not possibly occur during formic acid decomposition on the PtPd(111) surface owing to the high reaction barrier. Therefore, no poisoning of catalyst would occur on the PtPd(111) surface. Our results indicate that the significantly increased catalytic activity of bimetallic PtPd catalyst towards HCOOH oxidation should be attributed to the reduction in poisoning by CO.


2019 ◽  
Vol 7 (9) ◽  
pp. 4389-4394 ◽  
Author(s):  
Ke Chu ◽  
Ya-ping Liu ◽  
Yu-biao Li ◽  
Hu Zhang ◽  
Ye Tian

Density functional theory calculations revealed that CoO possessed poor HER activity but favorable NRR activity. CoO quantum dots (2–5 nm) supported on graphene exhibited a high NH3 yield of 21.5 μg h−1 mg−1 and a faradaic efficiency of 8.3% at −0.6 V vs. RHE under ambient conditions, superior to most of the reported NRR catalysts.


Sign in / Sign up

Export Citation Format

Share Document