Jahn–Teller Distorted Effects To Promote Nitrogen Reduction over Keggin-Type Phosphotungstic Acid Catalysts: Insight from Density Functional Theory Calculations

2019 ◽  
Vol 58 (12) ◽  
pp. 7852-7862 ◽  
Author(s):  
Yu Wang ◽  
Xue-Mei Chen ◽  
Li-Long Zhang ◽  
Chun-Guang Liu
2020 ◽  
Vol 8 (39) ◽  
pp. 20402-20407
Author(s):  
Yujin Ji ◽  
Yifan Li ◽  
Huilong Dong ◽  
Lifeng Ding ◽  
Youyong Li

Grand canonical density functional theory calculations reveal that the Ru–N4 motif is the superior catalytic site for eNRR rather than the Ru–N3 motif.


Author(s):  
Huidi Yu ◽  
Yurui Xue ◽  
Lan Hui ◽  
Chao Zhang ◽  
Yan Fang ◽  
...  

Abstract Exploring new catalysts for nitrogen reduction at ambient pressures and temperatures with ultrahigh ammonia (NH3) yield and selectivity is still a giant challenge. In this work, atomic catalysts with separated Pd atoms on graphdiyne (Pd-GDY) have been synthesized and show fascinating electrocatalytic properties for nitrogen reduction. Outstandingly, the catalyst shows the highest average NH3 yield of 4.45 ± 0.30 mgNH3 mgPd−1 h−1, almost tens of orders larger than previously reported ones, and 100% reaction selectivity in neutral media. And Pd-GDY exhibits almost no decreases in the NH3 yield and Faradaic efficiency. Density functional theory calculations show that the reaction pathway prefers to perform at the (Pd, C1, C2) active area due to the strongly coupled (Pd, C1, C2) which elevates the selectivity via enhanced electron-transfer. By adjusting the p-d coupling accurately, the reduction of self-activated nitrogen is promoted by anchoring atom selection, and the side effects are minimized.


2006 ◽  
Vol 71 (11-12) ◽  
pp. 1525-1531 ◽  
Author(s):  
Wojciech Grochala

The enthalpy of four polymorphs of CaN has been scrutinized at 0 and 100 GPa using density functional theory calculations. It is shown that structures of diamagnetic calcium diazenide (Ca2N2) are preferred over the cubic ferromagnetic polymorph (CaN) postulated before, both at 0 and 100 GPa.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Chih-Chuen Lin ◽  
Phani Motamarri ◽  
Vikram Gavini

AbstractWe present a tensor-structured algorithm for efficient large-scale density functional theory (DFT) calculations by constructing a Tucker tensor basis that is adapted to the Kohn–Sham Hamiltonian and localized in real-space. The proposed approach uses an additive separable approximation to the Kohn–Sham Hamiltonian and an L1 localization technique to generate the 1-D localized functions that constitute the Tucker tensor basis. Numerical results show that the resulting Tucker tensor basis exhibits exponential convergence in the ground-state energy with increasing Tucker rank. Further, the proposed tensor-structured algorithm demonstrated sub-quadratic scaling with system-size for both systems with and without a gap, and involving many thousands of atoms. This reduced-order scaling has also resulted in the proposed approach outperforming plane-wave DFT implementation for systems beyond 2000 electrons.


2021 ◽  
Vol 60 (8) ◽  
pp. 6016-6026
Author(s):  
Aydar Rakhmatullin ◽  
Maxim S. Molokeev ◽  
Graham King ◽  
Ilya B. Polovov ◽  
Konstantin V. Maksimtsev ◽  
...  

Author(s):  
Lijuan Meng ◽  
Jinlian Lu ◽  
Yujie Bai ◽  
Lili Liu ◽  
Tang Jingyi ◽  
...  

Understanding the fundamentals of chemical vapor deposition bilayer graphene growth is crucial for its synthesis. By employing density functional theory calculations and classical molecular dynamics simulations, we have investigated the...


Sign in / Sign up

Export Citation Format

Share Document