scholarly journals Comparison of Pulsed-Field Gel Electrophoresis and Whole Genome Sequencing in Clostridium difficile Typing

2016 ◽  
Vol 3 (suppl_1) ◽  
Author(s):  
Ling Yuan Kong ◽  
David Eyre ◽  
A. Sarah Walker ◽  
Jacques Corbeil ◽  
Mark Wilcox ◽  
...  
2015 ◽  
Vol 144 (3) ◽  
pp. 576-581 ◽  
Author(s):  
M. MOHAMMED ◽  
N. DELAPPE ◽  
J. O'CONNOR ◽  
P. McKEOWN ◽  
P. GARVEY ◽  
...  

SUMMARYSalmonella enterica subsp. enterica serovar Dublin is an uncommon cause of human salmonellosis; however, a relatively high proportion of cases are associated with invasive disease. The serotype is associated with cattle. A geographically diffuse outbreak of S. Dublin involving nine patients occurred in Ireland in 2013. The source of infection was not identified. Typing of outbreak associated isolates by pulsed-field gel electrophoresis (PFGE) was of limited value because PFGE has limited discriminatory power for S. Dublin. Whole genome sequencing (WGS) showed conclusively that the isolates were closely related to each other, to an apparently unrelated isolate from 2011 and distinct from other isolates that were not readily distinguishable by PFGE.


2007 ◽  
Vol 73 (10) ◽  
pp. 3446-3449 ◽  
Author(s):  
Wenwan Zhong ◽  
Yulin Shou ◽  
Thomas M. Yoshida ◽  
Babetta L. Marrone

ABSTRACT A pulsed-field gel electrophoresis (PFGE) method was developed for discriminating Bacillus anthracis from B. cereus and B. thuringiensis. A worldwide collection of 25 B. anthracis isolates showed high-profile homology, and these isolates were unambiguously distinguished from B. cereus and B. thuringiensis isolates by cluster analysis of the whole-genome macrorestriction enzyme digestion patterns generated by NotI.


mSystems ◽  
2019 ◽  
Vol 4 (2) ◽  
Author(s):  
Yuan Wu ◽  
Chen Liu ◽  
Wen-Ge Li ◽  
Jun-Li Xu ◽  
Wen-Zhu Zhang ◽  
...  

ABSTRACTHorizontal gene transfer of mobile genetic elements (MGEs) accounts for the mosaic genome ofClostridium difficile, leading to acquisition of new phenotypes, including drug resistance and reconstruction of the genomes. MGEs were analyzed according to the whole-genome sequences of 37C. difficileisolates with a variety of sequence types (STs) within clade 4 from China. Great diversity was found in each transposon even within isolates with the same ST. Two novel transposons were identified in isolates ZR9 and ZR18, of which approximately one third to half of the genes showed heterogenous origins compared with the usual intestinal bacterial genes. Most importantly,catD, known to be harbored by Tn4453a/b, was replaced byaac(6′) aph(2′′)in isolates 2, 7, and 28. This phenomenon illustrated the frequent occurrence of gene exchanges betweenC. difficileand other enterobacteria with individual heterogeneity. Numerous prophages and CRISPR arrays were identified inC. difficileisolates of clade 4. Approximately 20% of spacers were located in prophage-carried CRISPR arrays, providing a new method for typing and tracing the origins of closely related isolates, as well as in-depth studies of the mechanism underlying genome remodeling. The rates of drug resistance were obviously higher than those reported previously around the world, although all isolates retained high sensitivity to vancomycin and metronidazole. The increasing number ofC. difficileisolates resistant to all antibiotics tested here suggests the ease with which resistance is acquiredin vivo. This study gives insights into the genetic mechanism of microevolution within clade 4.IMPORTANCEMobile genetic elements play a key role in the continuing evolution ofClostridium difficile, resulting in the emergence of new phenotypes for individual isolates. On the basis of whole-genome sequencing analysis, we comprehensively explored transposons, CRISPR, prophage, and genetic sites for drug resistance within clade 4C. difficileisolates with different sequence types. Great diversity in MGEs and a high rate of multidrug resistance were found within this clade, including new transposons, Tn4453a/bwithaac(6′) aph(2′′)instead ofcatD, and a relatively high rate of prophage-carried CRISPR arrays. These findings provide important new insights into the mechanism of genome remodeling within clade 4 and offer a new method for typing and tracing the origins of closely related isolates.


2012 ◽  
Vol 207 (4) ◽  
pp. 675-686 ◽  
Author(s):  
Kate E. Dingle ◽  
Xavier Didelot ◽  
M. Azim Ansari ◽  
David W. Eyre ◽  
Alison Vaughan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document