Geologic Time

2021 ◽  
pp. 47-68
Author(s):  
Elisabeth Ervin-Blankenheim

The time scale of geology—the first overarching precept in geology—and its development are the focus of this chapter. How did geologists determine the great age of the Earth through the spatial nature of geologic units and changes in fossils over time? There was no guidebook to the process of unraveling the Earth’s biography, and the discoveries proceeded step by step using observation and the development of hypotheses. Scientists such as Abraham Werner established principles to place rocks in order relative to one another, providing the beginning of understanding strata, their composition, sources, and life within them. Early estimates of the age of the Earth were on the order of thousands of years, carefully calculated based on the generations in the Bible. However, geologists such as James Hutton and Charles Lyell realized that the probable age of the Earth was much greater by examining the time it would take for processes, like sedimentation rates for a layer of sand or mud to be deposited to occur. From these observations, they deduced it would take orders of magnitude more time to build up great masses of rock layers, and the time scale of geology was extended millions of years.

2020 ◽  
Vol 18 ◽  
pp. 1-10
Author(s):  
C. Soriano

In the coming years the Anthropocene will be likely submitted to formalization by the Anthropocene Working Group as a chronostratigraphic unit of the Geologic Time Scale. This has generated an increasing debate among detractors and defenders of its formalization in general, and of the proposal by the Anthropocene Working Group in particular. Here, the main issues regarding the Geologic Time Scale and the rules to formalize units, the empirical data supporting the Anthropocene formalization and the critiques to formalize it are critically reviewed. The procedure to formalize the Anthropocene is not dissimilar from those of the other units of the Geologic Time Scale and has been essentially based on stratigraphic and geologic criteria. Following the recommendation of the Anthropocene Working Group and based on the empirical evidence on the Anthropocene as it is expressed in strata and, more important, on the immanent and structural link between the Anthropocene and the reproduction of capital, it is proposed to define Capitalian as a Stage of the Anthropocene Epoch. In this way, a truly comprehensive understanding of the Earth history is obtained, which comprises the ultimate causes of the ongoing planetary transformation and its stratatigraphic expression.


2021 ◽  
pp. 69-81
Author(s):  
Elisabeth Ervin-Blankenheim

Geologists first unraveled the geologic time scale by relative age-dating, discussed in the last chapter. Once geologists sorted out the order of rock units, subsequent advances in methodologies, detailed in this chapter, by chronometric and numerical means based on radioisotopes, other atomic measures, and quantitative techniques, were employed to measure time. Many minerals and rocks have “clocks” within them that can be used to pin down the actual age of the particular geologic sample or the age of boundaries between formal units of the geologic time scale. This chapter explains how geologists decipher those clocks and determine the ages of rocks by numerical age-dating. The history of radioisotopes is tracked, starting with Ernest Rutherford and Pierre and Marie Curie. The modern geologic time scale is depicted and expanded upon, along with why it is essential for geologic maps and how the time scale can help with people-sized problems and challenges faced on the Earth.


2006 ◽  
Vol 12 ◽  
pp. 1-23 ◽  
Author(s):  
Brent V. Miller

Radiometric dating of rocks and minerals to constrain the age of the Earth, timing of geological events and paleobiological histories has its roots in the works of nuclear physicists of the early Nineteenth Century during the period of discovery of radioactivity and investigations into the nature of the atom. The intervening years since have seen great progress in using the long-lived radioactive elements to constrain the origin and evolution of the Earth and to place the rock and fossil record into a consistent, numerically quantifiable temporal framework.U-Th-Pb and40Ar/39Ar dating methods have emerged as the primary tools for calibrating most of Earth history. It is important for all geoscientists to appreciate the physical basis underlying these methods and to have the ability to evaluate dates by means of currently accepted practices of data presentation. This introduction, along with the accompanying chapters, is intended to help the consumers of radiometric dates to understand better the uses and limitations of radiometric dating methods in an effort to tailor methods and techniques to address specific geochronologic needs, including calibration of the geologic time scale.The ultimate goal of a fully calibrated rock record remains an on-going endeavor. The 2004 ICS geologic time scale is the latest compilation of those efforts. The numerical age calibration is constrained by only 213 radiometric dates, the vast majority of which are U-Pb and40Ar/39Ar dates. Radiometric age control is not evenly distributed through geologic time. There are virtually no radiometric dates in the late Cenozoic where magnetostratigraphy and cyclostratigraphic methods are more precise and applicable. Radiometric dating efforts are concentrated on biostratigraphically important segments of the rock record such as the Permian-Triassic and Cretaceous-Paleocene boundary events, and this is reflected in high-precision calibration of these boundaries. Large segments of geologic time, however, are constrained by either a few radiometric dates per chronostratigraphic unit (most of the Paleozoic) or none at all (Upper Triassic). The current status of radiometric age control on the rock record largely reflects real, underlying scientific issues in biostratigraphy and geochronology, and thus can help point the way to fruitful lines of collaboration between paleontologists, stratigraphers, and geochronologists.


1996 ◽  
Vol 2 ◽  
pp. 127-136
Author(s):  
Judy Scotchmoor

Telling the history of the earth requires placing events in sequence so that reference can be given to the relative and/or numerical time at which each event occurred. This helps to make sense out of the enormous expanse of time that has elapsed since the origin of the earth. This activity will help students to understand the methods used by geologists in creating the Geologic Time Scale.


2015 ◽  
Vol 55 (2) ◽  
pp. 178
Author(s):  
Lisa Presley

Authors Joyce Quinn and Susan Woodward combine their decades of research, teaching, and knowledge in Earth’s Landscape: An Encyclopedia of the World’s Geographic Features. The entries in this two volume set focus on 460 of the natural geographic features of the earth. The introduction provides a wealth of useful background information, including a table of the geologic time scale, a table of major climate types and descriptions of the earth’s major surface features.


2013 ◽  
Vol 4 (2) ◽  
pp. 151-156 ◽  
Author(s):  
G. Kozma ◽  
E. Molnár ◽  
K. Czimre ◽  
J. Pénzes

Abstract In our days, energy issues belong to the most important problems facing the Earth and the solution may be expected partly from decreasing the amount of the energy used and partly from the increased utilisation of renewable energy resources. A substantial part of energy consumption is related to buildings and includes, inter alia, the use for cooling/heating, lighting and cooking purposes. In the view of the above, special attention has been paid to minimising the energy consumption of buildings since the late 1980s. Within the framework of that, the passive house was created, a building in which the thermal comfort can be achieved solely by postheating or postcooling of the fresh air mass without a need for recirculated air. The aim of the paper is to study the changes in the construction of passive houses over time. In addition, the differences between the geographical locations and the observable peculiarities with regard to the individual building types are also presented.


Author(s):  
Paul A. Bramadat

Is it possible for conservative Protestant groups to survive in secular institutional settings? Here, Bramadat offers an ethnographic study of the Inter-Varsity Christian Fellowship (IVCF) at McMaster University, a group that espouses fundamentalist interpretations of the Bible, women's roles, the age of the earth, alcohol consumption, and sexual ethics. In examining this group, Bramadat demonstrates how this tiny minority thrives within the overwhelmingly secular context of the University.


1991 ◽  
Vol 99 (5) ◽  
pp. 786-786
Author(s):  
John J. Flynn

Author(s):  
Kathleen C. Oberlin

The typical story about creationist social movements centers on battles in the classroom or in the courtroom—like the Scopes Trial in 1925. But there is a new setting: a museum. “Prepare to Believe” is the slogan that greets visitors throughout the Creation Museum located in Petersburg, Kentucky. It carries the message that the organization Answers in Genesis (AiG) uses to welcome fellow believers as well as skeptics since opening in 2007. The Creation Museum seeks to persuade visitors that if one views both the Bible (a close, literal reading) and nature (observational, real world data) as sources of authority, then the earth appears to be much younger than conventionally understood in mainstream society. This book argues that the impact of the Creation Museum does not depend on the accuracy or credibility of its scientific claims, as many scholars, media critics, and political pundits would suggest. Instead, what AiG goes after by creating a physical site like the Creation Museum is the ability to foster plausibility politics—broadening what the audience perceives as possible and amplifying the stakes as the ideas reach more people. Destabilizing the belief that only one type of secular institution may make claims about the age of the earth and human origins, the Creation Museum is a threat to this singular positioning. In doing so, AiG repositions itself to produce longstanding effects on the public’s perception of who may make scientific claims. Creating the Creation Museum is a story about how a group endures.


Sign in / Sign up

Export Citation Format

Share Document