Opening the window

Author(s):  
Nils Andersson

This chapter provides a brief survey of gravitational-wave astronomy, including the recent recent breakthrough detection. It sets the stage for the rest of the book via simple back-of-the-envelope estimates for different sets of sources. The chapter also describes the first detection of a black hole merger (GW150914) as well as the first observed neutron star binary event (GW170817) and introduces some of the ideas required to understand these breakthroughs.

2008 ◽  
Vol 78 (4) ◽  
Author(s):  
B. Abbott ◽  
R. Abbott ◽  
R. Adhikari ◽  
J. Agresti ◽  
P. Ajith ◽  
...  

2006 ◽  
Author(s):  
Joshua A. Faber ◽  
Thomas W. Baumgarte ◽  
Stuart L. Shapiro ◽  
Keisuke Taniguchi ◽  
Frederic A. Rasio

Universe ◽  
2020 ◽  
Vol 6 (12) ◽  
pp. 231
Author(s):  
Kilar Zhang ◽  
Feng-Li Lin

Motivated by the recent discoveries of compact objects from LIGO/Virgo observations, we study the possibility of identifying some of these objects as compact stars made of dark matter called dark stars, or the mix of dark and nuclear matters called hybrid stars. In particular, in GW190814, a new compact object with 2.6 M⊙ is reported. This could be the lightest black hole, the heaviest neutron star, and a dark or hybrid star. In this work, we extend the discussion on the interpretations of the recent LIGO/Virgo events as hybrid stars made of various self-interacting dark matter (SIDM) in the isotropic limit. We pay particular attention to the saddle instability of the hybrid stars which will constrain the possible SIDM models.


2017 ◽  
Vol 95 (6) ◽  
Author(s):  
Nathaniel Indik ◽  
K. Haris ◽  
Tito Dal Canton ◽  
Henning Fehrmann ◽  
Badri Krishnan ◽  
...  

2018 ◽  
Vol 97 (8) ◽  
Author(s):  
Fatemeh Hossein Nouri ◽  
Matthew D. Duez ◽  
Francois Foucart ◽  
M. Brett Deaton ◽  
Roland Haas ◽  
...  

2020 ◽  
Vol 639 ◽  
pp. A123 ◽  
Author(s):  
Matthias U. Kruckow

Aims. I aim to explain the mass discrepancy between the observed double neutron-star binary population by radio pulsar observations and gravitational-wave observation. Methods. I performed binary population synthesis calculations and compared their results with the radio and the gravitational-wave observations simultaneously. Results. Simulations of binary evolution were used to link different observations of double neutron star binaries with each other. I investigated the progenitor of GW190425 in more detail. A distribution of masses and merger times of the possible progenitors is presented. Conclusions. A mass discrepancy between the radio pulsars in the Milky Way with another neutron star companion and the inferred masses from gravitational-wave observations of those kind of merging systems is naturally found in binary evolution.


Sign in / Sign up

Export Citation Format

Share Document