The Logic of Imagination

2019 ◽  
pp. 141-158
Author(s):  
Francesco Berto ◽  
Mark Jago

Imagination seems to have a logic, albeit one which is hyperintensional and sensitive to context. This chapter offers a semantics of imagination, with operators expressing ‘imaginative acts’ of mental simulation. A number of conditions that could be imposed on the semantics are then discussed, in order to validate certain inferences. One important issue is how acts of imagination interact with disjunction: one can imagine some disjunction as obtaining without being imaginatively specific about which disjunction obtains. This chapter subsequently turns to non-monotonicity: how B may follow from imagining that A, but not from imagining that A ∧ C. Finally, the Principle of Imaginative Equivalents is discussed.

2020 ◽  
pp. 1-26
Author(s):  
ILARIA CANAVOTTO ◽  
FRANCESCO BERTO ◽  
ALESSANDRO GIORDANI

Abstract We study imagination as reality-oriented mental simulation (ROMS): the activity of simulating nonactual scenarios in one’s mind, to investigate what would happen if they were realized. Three connected questions concerning ROMS are: What is the logic, if there is one, of such an activity? How can we gain new knowledge via it? What is voluntary in it and what is not? We address them by building a list of core features of imagination as ROMS, drawing on research in cognitive psychology and the philosophy of mind. We then provide a logic of imagination as ROMS which models such features, combining techniques from epistemic logic, action logic, and subject matter semantics. Our logic comprises a modal propositional language with non-monotonic imagination operators, a formal semantics, and an axiomatization.


2020 ◽  
Vol 43 ◽  
Author(s):  
Kellen Mrkva ◽  
Luca Cian ◽  
Leaf Van Boven

Abstract Gilead et al. present a rich account of abstraction. Though the account describes several elements which influence mental representation, it is worth also delineating how feelings, such as fluency and emotion, influence mental simulation. Additionally, though past experience can sometimes make simulations more accurate and worthwhile (as Gilead et al. suggest), many systematic prediction errors persist despite substantial experience.


2021 ◽  
Vol 121 (5) ◽  
pp. 1379-1388
Author(s):  
A. Mouthon ◽  
J. Ruffieux ◽  
W. Taube

Abstract Purpose Action observation (AO) during motor imagery (MI), so-called AO + MI, has been proposed as a new form of non-physical training, but the neural mechanisms involved remains largely unknown. Therefore, this study aimed to explore whether there were similarities in the modulation of short-interval intracortical inhibition (SICI) during execution and mental simulation of postural tasks, and if there was a difference in modulation of SICI between AO + MI and AO alone. Method 21 young adults (mean ± SD = 24 ± 6.3 years) were asked to either passively observe (AO) or imagine while observing (AO + MI) or physically perform a stable and an unstable standing task, while motor evoked potentials and SICI were assessed in the soleus muscle. Result SICI results showed a modulation by condition (F2,40 = 6.42, p = 0.009) with less SICI in the execution condition compared to the AO + MI (p = 0.009) and AO (p = 0.002) condition. Moreover, switching from the stable to the unstable stance condition reduced significantly SICI (F1,20 = 8.34, p = 0.009) during both, physically performed (− 38.5%; p = 0.03) and mentally simulated balance (− 10%, p < 0.001, AO + MI and AO taken together). Conclusion The data demonstrate that SICI is reduced when switching from a stable to a more unstable standing task during both real task execution and mental simulation. Therefore, our results strengthen and further support the existence of similarities between executed and mentally simulated actions by showing that not only corticospinal excitability is similarly modulated but also SICI. This proposes that the activity of the inhibitory cortical network during mental simulation of balance tasks resembles the one during physical postural task execution.


Sign in / Sign up

Export Citation Format

Share Document