From Christoffel Words to Markoff Numbers

Author(s):  
Christophe Reutenauer

Christoffel introduced in 1875 a special class of words on a binary alphabet, linked to continued fractions. Some years laterMarkoff published his famous theory, called nowMarkoff theory. It characterizes certain quadratic forms, and certain real numbers by extremal inequalities. Both classes are constructed by using certain natural numbers, calledMarkoff numbers; they are characterized by a certain diophantine equality. More basically, they are constructed using certain words, essentially the Christoffel words. The link between Christoffelwords and the theory ofMarkoffwas noted by Frobenius.Motivated by this link, the book presents the classical theory of Markoff in its two aspects, based on the theory of Christoffel words. This is done in Part I of the book. Part II gives the more advanced and recent results of the theory of Christoffel words: palindromes (central words), periods, Lyndon words, Stern–Brocot tree, semi-convergents of rational numbers and finite continued fractions, geometric interpretations, conjugation, factors of Christoffel words, finite Sturmian words, free group on two generators, bases, inner automorphisms, Christoffel bases, Nielsen’s criterion, Sturmian morphisms, and positive automorphisms of this free group.

1989 ◽  
Vol 12 (3) ◽  
pp. 603-613 ◽  
Author(s):  
Arnold Knopfmacher ◽  
John Knopfmacher

Two further new methods are put forward for constructing the complete ordered field of real numbers out of the ordered field of rational numbers. The methods are motivated by some little known results on the representation of real numbers via alternating series of rational numbers. Amongst advantages of the methods are the facts that they do not require an arbitrary choice of "base" or equivalence classes or any similar constructs. The methods bear similarities to a method of construction due to Rieger, which utilises continued fractions.


Author(s):  
Christophe Reutenauer

Basic theory of continued fractions: finite continued fractions (for rational numbers) and infinite continued fractions (for irrational numbers). This also includes computation of the quadratic number with a given periodic continued fraction, conjugate quadratic numbers, and approximation of reals and convergents of continued fractions. The chapter then takes on quadratic bounds for the error term and Legendre’s theorem, and reals having the same expansion up to rank n. Next, it discusses Lagrange number and its characterization as an upper limit, and equivalence of real numbers (equivalent numbers have the same Lagrange number). Finally, it covers ordering real numbers by alternating lexicographical order on continued fractions.


1997 ◽  
Vol 178 (1-2) ◽  
pp. 171-203 ◽  
Author(s):  
Jean Berstel ◽  
Aldo de Luca
Keyword(s):  

2012 ◽  
Vol 148 (3) ◽  
pp. 718-750 ◽  
Author(s):  
Yann Bugeaud

AbstractWe establish measures of non-quadraticity and transcendence measures for real numbers whose sequence of partial quotients has sublinear block complexity. The main new ingredient is an improvement of Liouville’s inequality giving a lower bound for the distance between two distinct quadratic real numbers. Furthermore, we discuss the gap between Mahler’s exponent w2 and Koksma’s exponent w*2.


10.37236/2473 ◽  
2013 ◽  
Vol 20 (1) ◽  
Author(s):  
Paweł Baturo ◽  
Marcin Piątkowski ◽  
Wojciech Rytter

We investigate some repetition problems for a very special class $\mathcal{S}$ of strings called the standard Sturmian words, which  have very compact representations in terms of sequences of integers. Usually the size of this word is exponential with respect to the size of its integer sequence, hence we are dealing with repetition problems in compressed strings. An explicit formula is given for the number $\rho(w)$ of runs in a standard word $w$. We show that $\rho(w)/|w|\le 4/5$ for each $w\in S$, and  there is an infinite sequence of strictly growing words $w_k\in {\mathcal{S}}$ such that $\lim_{k\rightarrow \infty} \frac{\rho(w_k)}{|w_k|} = \frac{4}{5}$. Moreover, we show how to compute the number of runs in a standard Sturmian word in linear time with respect to the size of its compressed representation.


Author(s):  
Vichian Laohakosol

AbstractA type of p–adic continued fraction first considered by A. Ruban is described, and is used to give a characterization of rational numbers.


Author(s):  
Christophe Reutenauer

This chapter gives several examples, which may help the reader to work in concrete terms with Markoff numbers, Christoffel words, Markoff constants, and quadratic forms. In particular the thirteen Markoff numbers <1000 are given, together with the associated mathematical objects considered before in the book:Markoff constants, Christoffel words, the associated matrices by the representation of Chapter 3, theMarkoff quadratic numbers whose expansion is given by the Christoffel word, the Markoff quadratic forms. Some results of Frobenius, Aigner, andClemens are given. In particular thematrix associated with a Christoffel word may be computed directly from its Markoff triple.


2020 ◽  
Vol 8 ◽  
Author(s):  
SOPHIE MORIER-GENOUD ◽  
VALENTIN OVSIENKO

We introduce a notion of $q$ -deformed rational numbers and $q$ -deformed continued fractions. A $q$ -deformed rational is encoded by a triangulation of a polygon and can be computed recursively. The recursive formula is analogous to the $q$ -deformed Pascal identity for the Gaussian binomial coefficients, but the Pascal triangle is replaced by the Farey graph. The coefficients of the polynomials defining the $q$ -rational count quiver subrepresentations of the maximal indecomposable representation of the graph dual to the triangulation. Several other properties, such as total positivity properties, $q$ -deformation of the Farey graph, matrix presentations and $q$ -continuants are given, as well as a relation to the Jones polynomial of rational knots.


Sign in / Sign up

Export Citation Format

Share Document