A guide to specific medicines

2021 ◽  
pp. 156-180
Author(s):  
Mark Selikowitz

There are many different medications used for ADHD, and these should only be prescribed by a medical specialist experienced in this field. Many children with ADHD do not need to take their medication every day of the week. The availability of long-acting medication means that most children with ADHD do not need to take medication at school. This chapter presents a detailed guide to specific medicines for ADHD, including short-acting stimulant medicines (Ritalin, Focalin, dexamphetamine, and Adderall IR), long-acting stimulant medications (Concerta, Ritalin LA, Focalin XR, Daytrana, Adderall XR, Metadate CD, and Vyvanse), and non-stimulant medications (imipramine [Tofranil], Clonidine, guanfacine [Intuniv], and atomoxetine [Strattera]).

CNS Spectrums ◽  
2007 ◽  
Vol 12 (S6) ◽  
pp. 8-11 ◽  
Author(s):  
Thomas J. Spencer

AbstractAttention-deficit/hyperactivity disorder (ADHD) is a lifelong condition that begins in childhood and continues with adult manifestations related to the core symptoms. Approximately 50% to 75% of children with ADHD continue to meet criteria for the disorder as adolescents and adults. Adults with the disorder increasingly present to primary care physicians, psychiatrists, and other practitioners for diagnosis and treatment. Understanding the diagnosis of ADHD in adults requires knowledge of age-dependent decline of symptoms over time. Retrospective recall of symptoms and impairment are valid methods of diagnosing the disorder. ADHD is also a brain disorder with a strong neurobiologic basis, complex etiology, and genetic component. Genetic and environmental vulnerabilities give rise to abnormalities in the brain and subsequent behavioral and cognitive deficits, which may produce the symptoms associated with ADHD. Magnetic resonance imaging studies of ADHD have provided evidence that abnormalities in the brain are caused by the disorder itself rather than treatment of the disorder. Psychiatric comorbidity is common among patients with ADHD and tends to complicate treatment. Acute and long-term use of long-acting stimulant formulations (methylphenidate and amphetamine compounds) have shown robust efficacy and tolerability consistent with the treatment response established in children with ADHD. Non-stimulant medications have demonstrated efficacy as well, and may be preferred in patients with tic and substance use disorders.In this expert roundtable supplement, Timothy E. Wilens, MD, reviews the epidemiology and clinical presentation of adult ADHD. Next, Joseph Biederman, MD, provides an overview of recent advances in the neurobiology of ADHD. Thomas J. Spencer, MD, reviews stimulant treatment of adult ADHD, and Lenard A. Adler concludes with a discussion of non-stimulant trials in adult ADHD.


CNS Spectrums ◽  
2007 ◽  
Vol 12 (S6) ◽  
pp. 14-14 ◽  

AbstractAttention-deficit/hyperactivity disorder (ADHD) is a lifelong condition that begins in childhood and continues with adult manifestations related to the core symptoms. Approximately 50% to 75% of children with ADHD continue to meet criteria for the disorder as adolescents and adults. Adults with the disorder increasingly present to primary care physicians, psychiatrists, and other practitioners for diagnosis and treatment. Understanding the diagnosis of ADHD in adults requires knowledge of age-dependent decline of symptoms over time. Retrospective recall of symptoms and impairment are valid methods of diagnosing the disorder. ADHD is also a brain disorder with a strong neurobiologic basis, complex etiology, and genetic component. Genetic and environmental vulnerabilities give rise to abnormalities in the brain and subsequent behavioral and cognitive deficits, which may produce the symptoms associated with ADHD. Magnetic resonance imaging studies of ADHD have provided evidence that abnormalities in the brain are caused by the disorder itself rather than treatment of the disorder. Psychiatric comorbidity is common among patients with ADHD and tends to complicate treatment. Acute and long-term use of long-acting stimulant formulations (methylphenidate and amphetamine compounds) have shown robust efficacy and tolerability consistent with the treatment response established in children with ADHD. Non-stimulant medications have demonstrated efficacy as well, and may be preferred in patients with tic and substance use disorders.In this expert roundtable supplement, Timothy E. Wilens, MD, reviews the epidemiology and clinical presentation of adult ADHD. Next, Joseph Biederman, MD, provides an overview of recent advances in the neurobiology of ADHD. Thomas J. Spencer, MD, reviews stimulant treatment of adult ADHD, and Lenard A. Adler concludes with a discussion of non-stimulant trials in adult ADHD.


CNS Spectrums ◽  
2007 ◽  
Vol 12 (S6) ◽  
pp. 1-5 ◽  
Author(s):  
Timothy E. Wilens

AbstractAttention-deficit/hyperactivity disorder (ADHD) is a lifelong condition that begins in childhood and continues with adult manifestations related to the core symptoms. Approximately 50% to 75% of children with ADHD continue to meet criteria for the disorder as adolescents and adults. Adults with the disorder increasingly present to primary care physicians, psychiatrists, and other practitioners for diagnosis and treatment. Understanding the diagnosis of ADHD in adults requires knowledge of age-dependent decline of symptoms over time. Retrospective recall of symptoms and impairment are valid methods of diagnosing the disorder. ADHD is also a brain disorder with a strong neurobiologic basis, complex etiology, and genetic component. Genetic and environmental vulnerabilities give rise to abnormalities in the brain and subsequent behavioral and cognitive deficits, which may produce the symptoms associated with ADHD. Magnetic resonance imaging studies of ADHD have provided evidence that abnormalities in the brain are caused by the disorder itself rather than treatment of the disorder. Psychiatric comorbidity is common among patients with ADHD and tends to complicate treatment. Acute and long-term use of long-acting stimulant formulations (methylphenidate and amphetamine compounds) have shown robust efficacy and tolerability consistent with the treatment response established in children with ADHD. Non-stimulant medications have demonstrated efficacy as well, and may be preferred in patients with tic and substance use disorders.


CNS Spectrums ◽  
2007 ◽  
Vol 12 (S6) ◽  
pp. 6-7 ◽  
Author(s):  
Joseph Biederman

AbstractAttention-deficit/hyperactivity disorder (ADHD) is a lifelong condition that begins in childhood and continues with adult manifestations related to the core symptoms. Approximately 50% to 75% of children with ADHD continue to meet criteria for the disorder as adolescents and adults. Adults with the disorder increasingly present to primary care physicians, psychiatrists, and other practitioners for diagnosis and treatment. Understanding the diagnosis of ADHD in adults requires knowledge of age-dependent decline of symptoms over time. Retrospective recall of symptoms and impairment are valid methods of diagnosing the disorder. ADHD is also a brain disorder with a strong neurobiologic basis, complex etiology, and genetic component. Genetic and environmental vulnerabilities give rise to abnormalities in the brain and subsequent behavioral and cognitive deficits, which may produce the symptoms associated with ADHD. Magnetic resonance imaging studies of ADHD have provided evidence that abnormalities in the brain are caused by the disorder itself rather than treatment of the disorder. Psychiatric comorbidity is common among patients with ADHD and tends to complicate treatment. Acute and long-term use of long-acting stimulant formulations (methylphenidate and amphetamine compounds) have shown robust efficacy and tolerability consistent with the treatment response established in children with ADHD. Non-stimulant medications have demonstrated efficacy as well, and may be preferred in patients with tic and substance use disorders.In this expert roundtable supplement, Timothy E. Wilens, MD, reviews the epidemiology and clinical presentation of adult ADHD. Next, Joseph Biederman, MD, provides an overview of recent advances in the neurobiology of ADHD. Thomas J. Spencer, MD, reviews stimulant treatment of adult ADHD, and Lenard A. Adler concludes with a discussion of non-stimulant trials in adult ADHD.


CNS Spectrums ◽  
2007 ◽  
Vol 12 (S6) ◽  
pp. 11-13 ◽  
Author(s):  
Lenard A. Adler

AbstractAttention-deficit/hyperactivity disorder (ADHD) is a lifelong condition that begins in childhood and continues with adult manifestations related to the core symptoms. Approximately 50% to 75% of children with ADHD continue to meet criteria for the disorder as adolescents and adults. Adults with the disorder increasingly present to primary care physicians, psychiatrists, and other practitioners for diagnosis and treatment. Understanding the diagnosis of ADHD in adults requires knowledge of age-dependent decline of symptoms over time. Retrospective recall of symptoms and impairment are valid methods of diagnosing the disorder. ADHD is also a brain disorder with a strong neurobiologic basis, complex etiology, and genetic component. Genetic and environmental vulnerabilities give rise to abnormalities in the brain and subsequent behavioral and cognitive deficits, which may produce the symptoms associated with ADHD. Magnetic resonance imaging studies of ADHD have provided evidence that abnormalities in the brain are caused by the disorder itself rather than treatment of the disorder. Psychiatric comorbidity is common among patients with ADHD and tends to complicate treatment. Acute and long-term use of long-acting stimulant formulations (methylphenidate and amphetamine compounds) have shown robust efficacy and tolerability consistent with the treatment response established in children with ADHD. Non-stimulant medications have demonstrated efficacy as well, and may be preferred in patients with tic and substance use disorders.In this expert roundtable supplement, Timothy E. Wilens, MD, reviews the epidemiology and clinical presentation of adult ADHD. Next, Joseph Biederman, MD, provides an overview of recent advances in the neurobiology of ADHD. Thomas J. Spencer, MD, reviews stimulant treatment of adult ADHD, and Lenard A. Adler concludes with a discussion of non-stimulant trials in adult ADHD.


2016 ◽  
Vol 21 (1) ◽  
pp. 40-45 ◽  
Author(s):  
William E. Pelham ◽  
Bradley H. Smith ◽  
Steven W. Evans ◽  
Oscar Bukstein ◽  
Elizabeth M. Gnagy ◽  
...  

Objective: Stimulant medication is an efficacious and first-line approach to treating ADHD in adolescence. However, less is known about the effectiveness of this approach as a treatment in real-world settings. The complicated nature of the secondary school environment and documented adolescent nonadherence with stimulant medication may undermine the exportability of this approach. Method: This study investigates stimulant medication effectiveness and adherence in a sample of adolescents with ADHD who were observed in their natural secondary school environment. Results: Results indicated that the effect of stimulant medication on adolescent functioning is smaller in naturalistic settings than in previous analogue studies. Long-acting pemoline produced greater adherence than the short-acting methylphenidate (MPH), but parents and adolescents preferred the short-acting MPH. Conclusions: Overall, adolescents reported very low satisfaction with stimulant medication. Findings are discussed.


Sign in / Sign up

Export Citation Format

Share Document