Studies on the Metabolism of Unsaturated Fatty Acids. XI. Alterations in the Activities of Enoyl-CoA Hydratase, 3-Hydroxyacyl-CoA Epimerase and 2,4-Dienyl-CoA Reductase in Rat Liver Mitochondria and Peroxisomes by Clofibrate12

1982 ◽  
Vol 92 (6) ◽  
pp. 2051-2054 ◽  
Author(s):  
Michinao MIZUGAKI ◽  
Tomoko NISHIMAKI ◽  
Hirotaka YAMAMOTO ◽  
Mataichi SAGI ◽  
Hiroshi YAMANAKA
1995 ◽  
Vol 308 (1) ◽  
pp. 39-44 ◽  
Author(s):  
K Y Tserng ◽  
S J Jin

The metabolism of cis-5 unsaturated fatty acids was studied in intact rat liver mitochondria to assess the operation of a reduction pathway. By using direct quantification of metabolites with a capillary-column gas chromatography, 3-hydroxydodecanoate was identified among other metabolites when cis-5-dodecenoate was metabolized in intact rat liver mitochondria. The formation of 3-hydroxydodecanoate supports the existence of a reduction pathway in the metabolism of cis-5-unsaturated fatty acids. This metabolite cannot be produced from the conventional isomerase-mediated pathway. However, the data also indicated the possible operation of the conventional isomerase-mediated pathway in intact rat liver mitochondria. The reduction pathway appears to account for at least 61% of the pathway for cis-5-dodecenoate. This reduction pathway was likely to proceed from the dehydrogenation to trans-2,cis-5-dodecadienoyl-CoA, which was isomerized to delta 3, delta 5-dodecadienoyl-CoA, then to trans-2,trans-4-dodecadienoate. The reduction was mediated by 2,4-dienoyl-CoA reductase by the conversion of trans-2,trans-4-dodecadienoyl-CoA into trans-3-dodecenoyl-CoA. However, direct reduction of the cis-5 double bond was also shown to be operating, although to a lesser extent.


1982 ◽  
Vol 208 (3) ◽  
pp. 749-757 ◽  
Author(s):  
H Osmundsen ◽  
J Cervenka ◽  
J Bremer

1. beta-Oxidation of gamma-linolenoylcarnitine, arachidonoylcarnitine and docosahexaenoylcarnitine by isolated rat liver mitochondria is inhibited by uncoupling conditions. Partial re-activation is obtained with added ATP. With mitochondria from clofibrate-treated rats ATP-stimulated rates of beta-oxidation of docosahexaenoylcarnitine are higher than ADP-stimulated rates. This is not observed with the beta-oxidation of oleoylcarnitine. 2. beta-Oxidation of docosahexaenoylcarnitine, in the presence of rotenone, is inhibited by added oxaloacetate, analogous to previous findings with pent-4-enoylcarnitine [see Osmundsen (1978) FEBS Lett. 88, 219-222]. In the absence of rotenone added oxaloacetate stimulates the beta-oxidation of docosahexaenoylcarnitine, but has the opposite effect on the beta-oxidation of palmitoylcarnitine. 3. beta-Oxidation of polyunsaturated acylcarnitines by isolated rat liver mitochondria is selectively increased after treatment of the animals with a low dietary dose (0.2%, w/w) of clofibrate. Treatment with a higher dose of clofibrate (0.5%, w/w) resulted in a general stimulation of beta-oxidation. 4. The results presented suggest that long-chain fatty acids possessing a delta 4-double bond are not readily beta-oxidized unless the 2,4-enoyl-CoA reductase (EC 1.3.1.-) is operating.


1989 ◽  
Vol 264 (1) ◽  
pp. 47-52 ◽  
Author(s):  
H Y Wang ◽  
H Schulz

The mitochondrial beta-oxidation of octa-2,4,6-trienoic acid was studied with the aim of elucidating the degradation of unsaturated fatty acids with conjugated double bonds. Octa-2,4,6-trienoic acid was found to be a respiratory substrate of coupled rat liver mitochondria, but not of rat heart mitochondria. Octa-2,4,6-trienoyl-CoA, the product of the inner-mitochondrial activation of the acid, was chemically synthesized and its degradation by purified enzymes of beta-oxidation was studied spectrophotometrically and by use of h.p.l.c. This compound is a substrate of NADPH-dependent 2,4-dienoyl-CoA reductase or 4-enoyl-CoA reductase (EC 1.3.1.34), which facilitates its further beta-oxidation. The product obtained after the NADPH-dependent reduction of octa-2,4,6-trienoyl-CoA and one round of beta-oxidation was hex-4-enoyl-CoA, which can be completely degraded via beta-oxidation. It is concluded that polyunsaturated fatty acids with two conjugated double bonds extending from even-numbered carbon atoms can be completely degraded via beta-oxidation because their presumed 2,4,6-trienoyl-CoA intermediates are substrates of 2,4-dienoyl-CoA reductase.


Sign in / Sign up

Export Citation Format

Share Document