scholarly journals Molecular Characterization of Soybean Pterocarpan 2-Dimethylallyltransferase in Glyceollin Biosynthesis: Local Gene and Whole-Genome Duplications of Prenyltransferase Genes Led to the Structural Diversity of Soybean Prenylated Isoflavonoids

2016 ◽  
Vol 57 (12) ◽  
pp. 2497-2509 ◽  
Author(s):  
Keisuke Yoneyama ◽  
Tomoyoshi Akashi ◽  
Toshio Aoki
2021 ◽  
Author(s):  
Pengchuan Sun ◽  
Beibei Jiao ◽  
Yongzhi Yang ◽  
Lanxing Shan ◽  
Ting Li ◽  
...  

Evidence of whole-genome duplications (WGDs) and subsequent karyotype changes has been detected in most major lineages of life on Earth. To clarify the complex resulting multiple-layered patterns of gene collinearity in genome analyses there is a need for convenient and accurate toolkits. To meet this need, we introduce here WGDI (Whole-Genome Duplication Integrated analysis), a Python-based command-line tool that facilitates comprehensive analysis of recursive polyploidizations and cross-species genome alignments. WGDI supports three main workflows (polyploid inference, hierarchical inference of genomic homology, and ancestral chromosomal karyotyping) that can improve detection of WGD and characterization of related events. It incorporates a more sensitive and accurate collinearity detection algorithm than previous softwares, and can accelerate WGD-related karyotype research. As a freely available toolkit at GitHub (https://github.com/SunPengChuan/wgdi), WGDI outperforms similar tools in terms of efficiency, flexibility and scalability. In an illustrative example of its application, WGDI convincingly clarified karyotype evolution in Aquilegia coerulea and Vitis vinifera following WGDs and rejected the hypothesis that Aquilegia contributed as a parental lineage to the allopolyploid origin of core dicots.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Weili Cai ◽  
Schyler Nunziata ◽  
John Rascoe ◽  
Michael J. Stulberg

AbstractHuanglongbing (HLB) is a worldwide deadly citrus disease caused by the phloem-limited bacteria ‘Candidatus Liberibacter asiaticus’ (CLas) vectored by Asian citrus psyllids. In order to effectively manage this disease, it is crucial to understand the relationship among the bacterial isolates from different geographical locations. Whole genome sequencing approaches will provide more precise molecular characterization of the diversity among populations. Due to the lack of in vitro culture, obtaining the whole genome sequence of CLas is still a challenge, especially for medium to low titer samples. Hundreds of millions of sequencing reads are needed to get good coverage of CLas from an HLB positive citrus sample. In order to overcome this limitation, we present here a new method, Agilent SureSelect XT HS target enrichment, which can specifically enrich CLas from a metagenomic sample while greatly reducing cost and increasing whole genome coverage of the pathogen. In this study, the CLas genome was successfully sequenced with 99.3% genome coverage and over 72X sequencing coverage from low titer tissue samples (equivalent to 28.52 Cq using Li 16 S qPCR). More importantly, this method also effectively captures regions of diversity in the CLas genome, which provides precise molecular characterization of different strains.


Cell Reports ◽  
2012 ◽  
Vol 2 (5) ◽  
pp. 1387-1398 ◽  
Author(s):  
Param Priya Singh ◽  
Séverine Affeldt ◽  
Ilaria Cascone ◽  
Rasim Selimoglu ◽  
Jacques Camonis ◽  
...  

Oncogene ◽  
2005 ◽  
Vol 24 (40) ◽  
pp. 6133-6142 ◽  
Author(s):  
Abdel Aouacheria ◽  
Vincent Navratil ◽  
Wenyu Wen ◽  
Ming Jiang ◽  
Dominique Mouchiroud ◽  
...  

Genes ◽  
2018 ◽  
Vol 9 (11) ◽  
pp. 563 ◽  
Author(s):  
Anna Szczepaniak ◽  
Michał Książkiewicz ◽  
Jan Podkowiński ◽  
Katarzyna Czyż ◽  
Marek Figlerowicz ◽  
...  

Acetyl-coenzyme A carboxylase (ACCase, E.C.6.4.1.2) catalyzes acetyl-coenzyme A carboxylation to malonyl coenzyme A. Plants possess two distinct ACCases differing by cellular compartment and function. Plastid ACCase contributes to de novo fatty acid synthesis, whereas cytosolic enzyme to the synthesis of very long chain fatty acids, phytoalexins, flavonoids, and anthocyanins. The narrow leafed lupin (Lupinus angustifolius L.) represents legumes, a plant family which evolved by whole-genome duplications (WGDs). The study aimed on the contribution of these WGDs to the multiplication of ACCase genes and their further evolutionary patterns. The molecular approach involved bacterial artificial chromosome (BAC) library screening, fluorescent in situ hybridization, linkage mapping, and BAC sequencing. In silico analysis encompassed sequence annotation, comparative mapping, selection pressure calculation, phylogenetic inference, and gene expression profiling. Among sequenced legumes, the highest number of ACCase genes was identified in lupin and soybean. The most abundant plastid ACCase subunit genes were accB. ACCase genes in legumes evolved by WGDs, evidenced by shared synteny and Bayesian phylogenetic inference. Transcriptional activity of almost all copies was confirmed. Gene duplicates were conserved by strong purifying selection, however, positive selection occurred in Arachis (accB2) and Lupinus (accC) lineages, putatively predating the WGD event(s). Early duplicated accA and accB genes underwent transcriptional sub-functionalization.


Sign in / Sign up

Export Citation Format

Share Document