Elevated Levels of Phosphorylated Sphingobases Do Not Antagonize Sphingobase- or Fumonisin B1-Induced Plant Cell Death

2019 ◽  
Vol 60 (5) ◽  
pp. 1109-1119 ◽  
Author(s):  
Ren� Glenz ◽  
Dorette Schmalhaus ◽  
Markus Krischke ◽  
Martin J Mueller ◽  
Frank Waller
Keyword(s):  
2017 ◽  
Vol 119 ◽  
pp. 70-80 ◽  
Author(s):  
Xiaoya Qin ◽  
Ruo-Xi Zhang ◽  
Shengchao Ge ◽  
Tao Zhou ◽  
Yun-Kuan Liang

2011 ◽  
Vol 23 (1) ◽  
Author(s):  
Mohamed Al-Whaibi
Keyword(s):  

2005 ◽  
Vol 168 (1) ◽  
pp. 17-20 ◽  
Author(s):  
Tsanko S. Gechev ◽  
Jacques Hille

Hydrogen peroxide (H2O2) has established itself as a key player in stress and programmed cell death responses, but little is known about the signaling pathways leading from H2O2 to programmed cell death in plants. Recently, identification of key regulatory mutants and near-full genome coverage microarray analysis of H2O2-induced cell death have begun to unravel the complexity of the H2O2 network. This review also describes a novel link between H2O2 and sphingolipids, two signals that can interplay and regulate plant cell death.


Author(s):  
Stéphanie Leroy-Lhez ◽  
Olivier Rezazgui ◽  
Mohammad Issawi ◽  
Mourad Elhabiri ◽  
Claude Alain Calliste ◽  
...  

2016 ◽  
Vol 18 (6) ◽  
pp. 850-863 ◽  
Author(s):  
William Sharpee ◽  
Yeonyee Oh ◽  
Mihwa Yi ◽  
William Franck ◽  
Alex Eyre ◽  
...  

FEBS Letters ◽  
2001 ◽  
Vol 510 (3) ◽  
pp. 136-140 ◽  
Author(s):  
Elzira E. Saviani ◽  
Cintia H. Orsi ◽  
Jusceley F.P. Oliveira ◽  
Cecı́lia A.F. Pinto-Maglio ◽  
Ione Salgado

2013 ◽  
Vol 26 (8) ◽  
pp. 868-879 ◽  
Author(s):  
Keisuke Mase ◽  
Nobuaki Ishihama ◽  
Hitoshi Mori ◽  
Hideki Takahashi ◽  
Hironori Kaminaka ◽  
...  

To investigate plant programmed cell death (PCD), we developed the model system using phytotoxin AAL, which is produced by necrotrophic pathogen Alternaria alternata f. sp. lycopersici, and AAL-sensitive Nicotiana umbratica. We previously reported that ethylene (ET) signaling plays a pivotal role in AAL-triggered cell death (ACD). However, downstream signaling of ET to ACD remains unclear. Here, we show that the modulator of AAL cell death 1 (MACD1), which is an APETALA2/ET response factor (ERF) transcription factor, participates in ACD and acts downstream of ET signaling during ACD. MACD1 is a transcriptional activator and MACD1 overexpression plants showed earlier ACD induction than control plants, suggesting that MACD1 positively regulates factors affecting cell death. To investigate the role of MACD1 in PCD, we used Arabidopsis thaliana and a structural analog of AAL, fumonisin B1 (FB1). FB1-triggered cell death was compromised in ET signaling and erf102 mutants. The loh2 mutants showed sensitivity to AAL, and the loh2-1/erf102 double mutant compromised ACD, indicating that ERF102 also participates in ACD. To investigate the PCD-associated genes regulated by ERF102, we compared our microarray data using ERF102 overexpression plants with the database of upregulated genes by AAL treatment in loh2 mutants, and found genes under the control of ERF102 in ACD.


Sign in / Sign up

Export Citation Format

Share Document