Sphingosine kinase AtSPHK1 functions in fumonisin B1-triggered cell death in Arabidopsis

2017 ◽  
Vol 119 ◽  
pp. 70-80 ◽  
Author(s):  
Xiaoya Qin ◽  
Ruo-Xi Zhang ◽  
Shengchao Ge ◽  
Tao Zhou ◽  
Yun-Kuan Liang
2013 ◽  
Vol 94 (11) ◽  
pp. 2437-2448 ◽  
Author(s):  
J. M. Carr ◽  
T. Kua ◽  
J. N. Clarke ◽  
J. K Calvert ◽  
J. R. Zebol ◽  
...  

Sphingosine kinase 1 (SphK1) is a lipid kinase with important roles including regulation of cell survival. We have previously shown reduced SphK1 activity in cells with an established dengue virus type-2 (DENV-2) infection. In this study, we examined the effect of alterations in SphK1 activity on DENV-2 replication and cell death and determined the mechanisms of the reduction in SphK1 activity. Chemical inhibition or overexpression of SphK1 after established DENV-2 infection had no effect on infectious DENV-2 production, although inhibition of SphK1 resulted in enhanced DENV-2-induced cell death. Reduced SphK1 activity was observed in multiple cell types, regardless of the ability of DENV-2 infection to be cytopathic, and was mediated by a post-translational mechanism. Unlike bovine viral diarrhea virus, where SphK1 activity is decreased by the NS3 protein, SphK1 activity was not affected by DENV-2 NS3 but, instead, was reduced by expression of the terminal 396 bases of the 3′ UTR of DENV-2 RNA. We have previously shown that eukaryotic elongation factor 1A (eEF1A) is a direct activator of SphK1 and here DENV-2 RNA co-localized and co-precipitated with eEF1A from infected cells. We propose that the reduction in SphK1 activity late in DENV-2-infected cells is a consequence of DENV-2 out-competing SphK1 for eEF1A binding and hijacking cellular eEF1A for its own replication strategy, rather than a specific host or virus-induced change in SphK1 to modulate viral replication. Nonetheless, reduced SphK1 activity may have important consequences for survival or death of the infected cell.


Blood ◽  
2017 ◽  
Vol 129 (6) ◽  
pp. 771-782 ◽  
Author(s):  
Jason A. Powell ◽  
Alexander C. Lewis ◽  
Wenying Zhu ◽  
John Toubia ◽  
Melissa R. Pitman ◽  
...  

Key Points Inhibition of SPHK1 in human AML cells induces MCL1 degradation and caspase-dependent cell death. SPHK1 inhibitors reduce leukemic burden and prolong survival in orthotopic patient-derived xenografts of AML.


2009 ◽  
Vol 64 (5) ◽  
pp. 1053-1058 ◽  
Author(s):  
Meryem Bektas ◽  
Stewart P. Johnson ◽  
William E. Poe ◽  
Darell D. Bigner ◽  
Henry S. Friedman

2019 ◽  
Vol 60 (5) ◽  
pp. 1109-1119 ◽  
Author(s):  
Ren� Glenz ◽  
Dorette Schmalhaus ◽  
Markus Krischke ◽  
Martin J Mueller ◽  
Frank Waller
Keyword(s):  

2013 ◽  
Vol 26 (8) ◽  
pp. 868-879 ◽  
Author(s):  
Keisuke Mase ◽  
Nobuaki Ishihama ◽  
Hitoshi Mori ◽  
Hideki Takahashi ◽  
Hironori Kaminaka ◽  
...  

To investigate plant programmed cell death (PCD), we developed the model system using phytotoxin AAL, which is produced by necrotrophic pathogen Alternaria alternata f. sp. lycopersici, and AAL-sensitive Nicotiana umbratica. We previously reported that ethylene (ET) signaling plays a pivotal role in AAL-triggered cell death (ACD). However, downstream signaling of ET to ACD remains unclear. Here, we show that the modulator of AAL cell death 1 (MACD1), which is an APETALA2/ET response factor (ERF) transcription factor, participates in ACD and acts downstream of ET signaling during ACD. MACD1 is a transcriptional activator and MACD1 overexpression plants showed earlier ACD induction than control plants, suggesting that MACD1 positively regulates factors affecting cell death. To investigate the role of MACD1 in PCD, we used Arabidopsis thaliana and a structural analog of AAL, fumonisin B1 (FB1). FB1-triggered cell death was compromised in ET signaling and erf102 mutants. The loh2 mutants showed sensitivity to AAL, and the loh2-1/erf102 double mutant compromised ACD, indicating that ERF102 also participates in ACD. To investigate the PCD-associated genes regulated by ERF102, we compared our microarray data using ERF102 overexpression plants with the database of upregulated genes by AAL treatment in loh2 mutants, and found genes under the control of ERF102 in ACD.


PLoS ONE ◽  
2013 ◽  
Vol 8 (4) ◽  
pp. e60769 ◽  
Author(s):  
Daisuke Igarashi ◽  
Gerit Bethke ◽  
Yuan Xu ◽  
Kenichi Tsuda ◽  
Jane Glazebrook ◽  
...  

2000 ◽  
Vol 12 (10) ◽  
pp. 1823-1835 ◽  
Author(s):  
Tsuneaki Asai ◽  
Julie M. Stone ◽  
Jacqueline E. Heard ◽  
Yelena Kovtun ◽  
Peter Yorgey ◽  
...  

Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 4905-4905
Author(s):  
Timothy J Brown ◽  
Brian Barth ◽  
David F. Claxton

Abstract Abstract 4905 Background: While understanding of Acute Myelogenous Leukemia (AML) pathogenesis has advanced greatly in recent years, drug discovery and development have added little to therapy. Ceramide and other sphingolipids are of therapeutic interest for many neoplasms (Jiang Y, DiVittore NA, Kaiser JM, et al. Combinatorial therapies improve the therapeutic efficacy of nanoliposomal ceramide for pancreatic cancer. Cancer Biol Ther. Oct 1 2011;12(7):574–585). Cellular ceramide accumulation favors a pro-apoptotic state, while accumulation of sphingosine-1-phosphate promotes survival. We have targeted the ceramide balance of AML cells in vitro with varying concentrations of liposomal formulations of C6 ceramide (Lip-C6), the sphingosine kinase-1 inhibitor safingol (Lip-Saf), and tamoxifen (Lip-Tam) to determine potential synergistic anti-leukemic efficacy. Safingol is a sphingosine kinase inhibitor currently in phase 1 trials. In addition, Tamoxifen can reverse drug resistance of many cancer cell types (Chapman JV, Gouaze-Andersson V, Messner MC, et al. Metabolism of short-chain ceramide by human cancer cells–implications for therapeutic approaches. Biochem Pharmacol. Aug 1 2010;80(3):308–315.). This has been shown to be due to the ability of Tamoxifen to block the activities of glucosylceramide synthase (GCS) and p-glycoprotein (P-GP), which coordinate to detoxify ceramide at the Golgi membrane. In the present study, liposomal drug formulations were chosen to enhance drug delivery and prevent premature drug metabolism. Methods: The cell lines C1498, HL-60, HL-60/VCR, GFPp210, Wehi-3B, K562, U937, and KG-1 were used in this study. Drugs were synthesized into liposomal formulations by the Penn State Hershey Drug Discovery and Delivery Core laboratory. Cellular viability was measured after treatment with Lip-C6, Lip-Saf, Lip-Tam, or a combination for 48 hours. Synergy and dose-response curves were modeled using CalcuSyn software. Apoptosis and cell proliferation were assessed using flow cytometry after treatment of drug for 24 hours at the calculated IC50 from MTS assays. Autophagy was also measured in C1498 cells to confirm an established safingol cell-death mechanism. Primary human AML collected by our lab from consenting, patients was assessed in methylcellulose for blast clonogenicity. Results and Conclusions: Several cell lines showed a favorable change in the IC50 of the drugs when used in combination, indicating a possible synergistic anti-leukemic mechanism of action. When Lip-C6 was combined with Lip-Saf in a varying ratios, synergistic growth inhibition was observed in the human AML cell lines HL-60, HL-60/VCR, and KG-1 (Figure 1). Interestingly, Lip-Tam caused complete cell population death at concentrations less than 15 μM in the Wehi-3B, K562, GFPp210, and C1498 lines. When cells were treated with Lip-C6 and Lip-Tam in a 1:1 combination, complete cell population killing was noted at concentrations of less than 10 μM in every cell line tested. Additionally, flow cytometric data confirmed findings of other investigators suggesting that Lip-Saf caused enhanced autophagy. Therefore, the observed synergistic leukemia cell death is likely due in part to the novel combination of an autophagy-inducer with an apoptosis-inducer. Clonogenic data has shown that combination of Lip-C6and Lip-Saf cooperate to inhibit formation of blast colonies from human AML, indicating a potential use in lessening leukemia burden (Figure 1). In conclusion, novel ceramide-centered drug combinations promote improved cell death of leukemia cell lines via accumulation of ceramide and inhibition of ceramide metabolic pathways. This study acts as a persuasive proof-of-concept of the effect of inhibiting a single ceramide degradation pathway within cells. By inhibiting sphingosine kinase-1 or the GCS activity of P-GP in these cell lines, it becomes apparent that the cellular ceramide balance shifts to favor a pro-apoptotic state. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document