scholarly journals Petrology of High-Pressure Metapelites from the Adula Nappe (Central Alps, Switzerland)

1999 ◽  
Vol 40 (1) ◽  
pp. 199-213 ◽  
Author(s):  
C. Meyre ◽  
C. De Capitani ◽  
T. Zack ◽  
M. Frey
2020 ◽  
Author(s):  
Francesca Piccoli ◽  
Pierre Lanari ◽  
Jörg Hermann ◽  
Thomas Pettke

<p>Subducted metapelites are more prone to re-equilibrate during exhumation than mafic or ultramafic rocks to the point that recognizing high-pressure (HP) relicts is often very challenging. Geologic evidence from the Cima Lunga Unit (Central Alps) show this apparent discrepancy between high to ultra-high pressure metamorphism (28 kbar and 780 °C) recorded in mafic/ultramafic lenses, and Barrovian metamorphism (<10 kbar, 650°C) in the adjacent metapelitic rocks. We collected a white mica – garnet – biotite – plagioclase – kyanite (+ quartz, + zircon, + rutile) bearing metapelite adjacent to the garnet metaperidotite lens that displays an apparently well equilibrated Barrovian mineral assemblage (garnet + plagioclase + biotite), with no macroscopic or microtextural indication of a HP and/or HT metamorphic event (e.g. omphacite crystals; migmatitic texture; polyphase inclusions). Nevertheless, microstructures like atoll-like garnet or large white mica flakes surrounded by biotite and ilmenite replacing rutile suggest incomplete re-equilibration. We investigated garnet and phengite crystals by electron probe and laser ablation-ICP-MS mapping. Major and trace element mapping reveals very complex mineral zoning in both minerals. In particular, high Ti content in phengite and increasing P and Zr contents in pyrope-rich garnet indicate that the studied rock underwent a HP-HT event. This is also supported by Zr in rutile thermometry that indicates temperatures well above the Barrovian metamorphism (T > 700 °C). We combined detailed textural analysis with petrological-geochemical data and thermodynamic modelling to reconstruct the metamorphic evolution of the studied rock. We show that, thank to incomplete re-equilibration, the rock documents an evolution from prograde to UHP-HT peak (27 kbar and 800 °C) to retrograde (Barrovian) conditions (10 kbar and 620 °C). Noteworthy, peak metamorphic conditions of metapelite coincide with peak metamorphic conditions of the garnet metaperidotite. Lastly, geochemical evidence for minor wet melting of the studied metapelite at HP-HT conditions was recognized and is likely linked to the dehydration of chlorite to form garnet peridotite in the adjacent ultramafic body. We propose that metapelites and ultramafic rocks were coupled before subduction or at least in its early stage. This finding opens new scenarios for the geodynamic interpretation of the Cima Lunga unit. We propose that the ultramafic lenses at Cima di Gagnone were parts of the exhumed and serpentinised mantle emplaced at the hyper-extended European continental margin of the Piemont-Ligurian ocean. Slices of the margin were detached and tectonically mixed in the subduction channel. These new constraints call for re-evaluation of the paleogeographic position of the Adula-Cima Lunga nappe.</p>


2014 ◽  
Vol 107 (2-3) ◽  
pp. 135-156 ◽  
Author(s):  
Mattia Cavargna-Sani ◽  
Jean-Luc Epard ◽  
Albrecht Steck

2020 ◽  
Author(s):  
Stefania Corvò ◽  
Matteo Maino ◽  
Antonio Langone ◽  
Filippo Luca Schenker ◽  
Silvio Seno ◽  
...  

<p>Keywords: HP-HT metamorphism, microstructures, U-Pb-Th dating, P-T-t-d path.</p><p>The occurrence of (ultra)high pressure and high temperature mineralogical assemblages developed during the Alpine phases makes the Cima di Gagnone area (Cima Lunga unit) one of the most studied area in the Central Alps. It consists of continental basement rocks (orthogneisses, paragneisses and metapelites) enveloping (ultra-) mafic bodies of oceanic crust (eclogite, amphibolites and peridotites) which record pressure and temperature up to 3 GPa and 800 °C, respectively (e.g. Nimis and Trommsdorff, 2001; Scambelluri et al., 2015). This high-grade metamorphism is constrained between 40 and 35 Ma by U-Pb dating from the ultra-mafic and mafic rocks (e.g. Gebauer, 1999). The metamorphism peak of the surrounding gneiss complex is instead constrained at considerably lower conditions (up to 0.8 GPa and 660 °C; Grond et al., 1995). The temperature peak in the felsic rocks is dated at ca. 32 Ma (Gebauer, 1996), coeval with the Bergell emplacement. Several models have been proposed to explain the coupling between ultrahigh- and middle- pressure rock pairs resulting in a large uncertainty in the adopted subduction-exhumation models.</p><p>We performed new petrological, micro-structural and geochronological data from the gneissic rocks, with the aim to investigate how the pressure and temperature conditions experienced by the felsic and mafic rocks are truly different. We explored the spatial variation of the metamorphic record through sample collection the structural control of the inclusion-matrix couples. Petrological and microstructural (SEM-EBSD) analyses are performed to define the deformation and metamorphic patterns of samples collected. Our results indicate that some portions of the gneissic matrix preserve relicts of higher pressure and temperature than previously suggested. The high-T conditions are temporally constrained by U-(Th)-Pb dating of monazite and zircon, which provides peak age estimations similar to the mafic rocks. The new data shed a light on heterogeneous metamorphism recorded by different rocks, providing new elements for the discussion on the most fitting geodynamic models.</p><p>REFERENCES</p><p>- Gebauer, 1996. A P-T-t Path for an (Ultra?-) High-Pressure Ultramafic/Mafic Rock-Association and its Felsic Country-Rocks Based on SHRIMP-Dating of Magmatic and Metamorphic Zircon Domains. Example: Alpe Arami (Central Swiss Alps). Earth Processes Reading the Isotopic Code, Geophysical Monograph 95, 307-329, AGU.</p><p>- Gebauer, 1999. Alpine geochronology of the Central Alps and Western Alps: new constraints for a complex geodynamic evolution. Schweiz. Mineral. Petrogr. Mitt., 79, 191-208.</p><p>- Grond, R., Wahl, F. and Pfiffner, M., 1995. Mehrphasige alpine Deformation und Metamorpshe in der nordlichen Cima Lunga-Einheit, Zentralalpen (Scweiz). Schweiz. Mineral. Petrogr. Mitt., 75, 371-386.</p><p>- Nimis, P. & Trommsdorff, V., 2001. Revised thermobarometry of Alpe Arami and other garnet peridotites from the central Alps. J. of Petrology, 42, 103-115.</p><p>- Scambelluri, M., Pettke, T., & Cannaò, E. (2015). Fluid-related inclusions in Alpine high-pressure peridotite reveal trace element recycling during subduction-zone dehydration of serpentinized mantle (Cima di Gagnone, Swiss Alps). Earth and Planetary Science Letters, 429, 45-59.</p>


Sign in / Sign up

Export Citation Format

Share Document