scholarly journals The 26·5 ka Oruanui Eruption, Taupo Volcano, New Zealand: Development, Characteristics and Evacuation of a Large Rhyolitic Magma Body

2005 ◽  
Vol 47 (1) ◽  
pp. 35-69 ◽  
Author(s):  
C. J. N. WILSON ◽  
S. BLAKE ◽  
B. L. A. CHARLIER ◽  
A. N. SUTTON
1988 ◽  
Vol 125 (3) ◽  
pp. 297-300 ◽  
Author(s):  
C. J. N. Wilson ◽  
V. R. Switsur ◽  
A. P. Ward

AbstractThe Oruanui eruption was the largest known outburst of Taupo volcano, New Zealand, and is among the larger Quaternary eruptions documented. The eruption deposits are variously known as the Oruanui, Wairakei, Kawakawa Tephra, or Aokautere Ash formations, and represent a bulk volume probably exceeding 500 km3. Four new 14C age determinations on carbonized vegetation in the non-welded Oruanui ignimbrite are combined to give a conventional age of 22590±230 yr b.p. Compared with the previously accepted figure of 20000 yr b.p., this new age resolves the anomaly of apparently older 14C ages being obtained from a demonstrably younger New Zealand deposit, and strengthens correlation of this eruption with an Antarctic ice-core acid anomaly. The trace of this eruption has great potential as a time-plane marker in the Antarctic just prior to the last glacial maximum. The close similarity in ages between the Oruanui and a comparable sized eruption (Ito/Aira-Tn) in Japan suggests that this period of activity may represent the best chance of resolving any linkages between large-scale explosive silicic volcanism and climate changes.


2021 ◽  
Author(s):  
◽  
Simon James Barker

<p>This thesis research presents geochemical perspectives on the magmatic recovery of Taupo volcano (New Zealand) in the aftermath of the 25.4 ka Oruanui supereruption. Following the Oruanui, and after only ~5 kyr of quiescence, Taupo erupted three small volume (~0.1 km3) dacitic units, followed by another ~5 kyr break, and then the modern sequence from ~12 ka onwards of 25 rhyolitic units organised into 3 geochemically distinct subgroups (SG1-SG3). The eruptive units are stratigraphically constrained over exceptionally short time intervals, providing fine-scale temporal snapshots of the magma system. In this thesis I compare and contrast whole-rock, mineral and glass compositions of Oruanui and post-Oruanui magmas through time to investigate the post-supereruption reconstruction and evolution of Taupo through to the latest eruption.  Despite overlapping vent sites and crustal source domains between the Oruanui and post-Oruanui eruptions, U/Th disequilibrium model-ages in zircons from Taupo SG1 rhyolites (erupted 12 ka-10 ka) and SG2 rhyolites (erupted 7 ka-2.6 ka) imply the presence of only minor inheritance of crystals from the Oruanui magma source. Post-Oruanui model-age spectra are instead typically centred close to eruption ages with subordinate older pre-300 ka equiline grains. U-Pb dating of these equiline grains shows that both 300-450 ka plutonic-derived and pre-100 Ma greywacke basement-derived zircons are present. The former largely coincide in age with zircons from the 350 ka Whakamaru eruption products, and are dominant over greywacke in young units which were vented within the published Whakamaru caldera outline. Despite multiple ages and vent sites, trace element compositions are broadly similar in zircons, regardless of their ages. However, a small subset of zircons analysed from SG1 rhyolites have notably high concentrations of U, Th, P, Y+ (REE)3+ and Nb but with only minor changes in Hf and Ti. SG2 zircons typically have higher Sc, reflecting large-scale changes in melt chemistry and crystallising mineral phases with time. The age spectra indicate that most Oruanui zircons were removed by thermally induced dissolution immediately following the supereruption. U-Th ages from individual post-Oruanui eruptions show consistent inheritance of post-Oruanui grains with model ages that centre between the temporally separated but geographically overlapping eruption groups, generating model-age modes. Within the statistical limitations of the isotopic measurements, we interpret these repeated modes to be significant, resulting from incorporation of crystal populations from cyclic post-Oruanui periods of magmatic cooling and crystallisation, acting within a crustal protolith chemically independent of that which built the Oruanui. Cooling periods alternate with times of rejuvenation and eruption, in some cases demonstrably accompanying syn-eruptive regional rifting and mafic injection. Not only were the processes that developed the supersized Oruanui magma body unusually rapid, but this huge magma system was effectively reset and rebuilt on a comparably short timescale.  Major and trace element whole rock, glass and mineral chemistry of post-Oruanui eruptive products indicate how the host magma system re-established and evolved. The dacite units show wide variations in melt inclusion compositions and strongly zoned minerals consistent with interaction of less-evolved mafic magmas at a depths of >8 km, overlapping with the inferred base of the old Oruanui mush system. The dacites reflect the first products of the rebuilding silicic magma system, as most of the Oruanui mush was reconfigured or significantly modified in composition following thermal fluxing accompanying post-caldera collapse readjustment. The first (SG1) rhyolites erupted from 12 ka formed through shallow fractionation (4-5 km depth) and cooling of a parental melt similar in composition to the earlier dacite melts, with overlapping melt inclusion and crystal core compositions between the two magma types. For the younger rhyolite units, fine-scale temporal changes in melt chemistry and mineral phase stability occur over time, which are closely linked to the development, stabilisation and maturation of a new and likely unitary rhyolite mush system at Taupo. The new mush system is closely linked to and sometimes physically interacts with the underlying mafic melts, which are similar in composition to those involved in the Oruanui eruption and provide the long-term thermal and chemical driving force for magmatism. We consider that the new mush body has expanded to >250 km3 (and possibly up to 1000 km3) but has not yet been located by geophysical investigations.  For the most recent SG3 eruptions, the system once again underwent widespread destabilisation, resulting in increased levels of melt extraction from the silicic mush. Trends in whole-rock chemistry and close links between melt inclusions and mineral zoning with earlier units indicates that the 35 km3 Unit Y (Taupo eruption) melt dominant body formed in response to mafic disruption of the silicic mush pile. Associated Fe-Mg diffusion timescales in orthopyroxene suggest that Taupo is capable of changing behaviour and generating large eruptible melt bodies on timescales as short as decades to centuries. The 232 AD Unit Y eruption culminated from a critical combination of high differential tectonic stress build up, and increased potency in the silicic magma system resulting from elevated levels of mafic magma input, resulting in one of the largest and most violent worldwide Holocene eruptions. The post-Y magma system then responded to further disruption with the eruption of sub-lacustrine dome(s). Taupo is considered to be capable of rapidly recovering in its modern form to continue its hyperactive eruptive behaviour on timescales that are of human interest and concern.</p>


Taupo volcano is the southerly of two dormant caldera volcanoes in the rhyolite-dominated central portion of the Taupo Volcanic Zone in the North Island of New Zealand. Taupo has an average magma output rate of 0.2 m 3 s -1 over the past 65 000 years, and is one of the most frequently active and productive rhyolite volcanoes known. The structure of the modern ‘inverse’ volcano was formed largely by caldera collapse associated with the voluminous 22 600 14 C years BP Oruanui eruption, and has been little modified since except for collapse following the 1850 14 C years BP eruption. The products of 28 eruptions (labelled T, f2, A, ..., Z), all of which post-date the Oruanui eruption, are defined and described here. Twenty-seven of these eruptions are represented by pyroclastic deposits (of which three were accompanied by a mappable lava extrusion), and one eruption (Z) solely by evidence for a lava extrusion. The deposits of seven eruptions (B, C, E, S, V, X and Y) largely correspond to previously defined tephra formations (Karapiti, Poronui, Opepe, Waimihia, Whakaipo, Mapara and Taupo, respectively). The previously defined Motutere and Hinemaiaia Tephras are reinterpreted to represent the products of 12 eruptions (G to R), while the remaining eight deposits and one eruption are newly recognized. Eruption T occurred at ca . 17200 14 C or 20500 calibrated years BP and eruption Z about 1740 calibrated years BP. Eruption volumes vary by more than three orders of magnitude between 0.01 and more than 44 km 3 , and repose periods by more than two orders of magnitude from ca . 20 to 6000 years. The eruption deposits reflect great variations in parameters such as volume, the dispersal characteristics of the fall deposits, the presence or absence of intraeruptive time breaks, the formation of pyroclastic flows, the degree of magmawater interaction, the vesiculation state of the magma on fragmentation and the relative proportions of juvenile obsidian versus foreign lithologies in the lithic fractions. All but seven fall deposits are plinian in dispersal; two (Y1 and probably W) are sub-plinian, one (Y5) has been termed ‘ultraplinian’, while 4/ and A are too poorly preserved for their dispersal to be assessed. The lengths of repose periods in the post-Oruanui sequence range are not randomly distributed but show self-similar properties (fractal dimensionality); repose intervals ( r , in years) of not more than 350 years follow n = 53.5r-0'21, and those of not less than 350 years follow n = 2096 r -0-83 , where n is the number of eruptions. The shorter repose periods may reflect triggering processes, such as regional extension, affecting magma bodies during their viable lifetimes, while longer repose intervals (i.e. not less than 350 years) may reflect an episodicity of major rifting events or the production of magma bodies below the volcano. Bulk volumes ( v , in km 3 ) of the eruption products also show self-similar properties (fractal dimensionality), with n = 6.17 v -0.46 . However, there are then apparently random relationships between eruption volumes and the preceding or succeeding repose period such that prediction of the time and size of the next eruption is impossible. The post-Oruanui activity at Taupo represents ‘noise’ superimposed on the more uniform, longer term activity in the central Taupo Volcanic Zone, where large (greater than 100 km 3 ) eruptions, such as the Oruanui, occur at more evenly spaced intervals of one per 40-60000 years.


2021 ◽  
Author(s):  
◽  
Simon James Barker

<p>This thesis research presents geochemical perspectives on the magmatic recovery of Taupo volcano (New Zealand) in the aftermath of the 25.4 ka Oruanui supereruption. Following the Oruanui, and after only ~5 kyr of quiescence, Taupo erupted three small volume (~0.1 km3) dacitic units, followed by another ~5 kyr break, and then the modern sequence from ~12 ka onwards of 25 rhyolitic units organised into 3 geochemically distinct subgroups (SG1-SG3). The eruptive units are stratigraphically constrained over exceptionally short time intervals, providing fine-scale temporal snapshots of the magma system. In this thesis I compare and contrast whole-rock, mineral and glass compositions of Oruanui and post-Oruanui magmas through time to investigate the post-supereruption reconstruction and evolution of Taupo through to the latest eruption.  Despite overlapping vent sites and crustal source domains between the Oruanui and post-Oruanui eruptions, U/Th disequilibrium model-ages in zircons from Taupo SG1 rhyolites (erupted 12 ka-10 ka) and SG2 rhyolites (erupted 7 ka-2.6 ka) imply the presence of only minor inheritance of crystals from the Oruanui magma source. Post-Oruanui model-age spectra are instead typically centred close to eruption ages with subordinate older pre-300 ka equiline grains. U-Pb dating of these equiline grains shows that both 300-450 ka plutonic-derived and pre-100 Ma greywacke basement-derived zircons are present. The former largely coincide in age with zircons from the 350 ka Whakamaru eruption products, and are dominant over greywacke in young units which were vented within the published Whakamaru caldera outline. Despite multiple ages and vent sites, trace element compositions are broadly similar in zircons, regardless of their ages. However, a small subset of zircons analysed from SG1 rhyolites have notably high concentrations of U, Th, P, Y+ (REE)3+ and Nb but with only minor changes in Hf and Ti. SG2 zircons typically have higher Sc, reflecting large-scale changes in melt chemistry and crystallising mineral phases with time. The age spectra indicate that most Oruanui zircons were removed by thermally induced dissolution immediately following the supereruption. U-Th ages from individual post-Oruanui eruptions show consistent inheritance of post-Oruanui grains with model ages that centre between the temporally separated but geographically overlapping eruption groups, generating model-age modes. Within the statistical limitations of the isotopic measurements, we interpret these repeated modes to be significant, resulting from incorporation of crystal populations from cyclic post-Oruanui periods of magmatic cooling and crystallisation, acting within a crustal protolith chemically independent of that which built the Oruanui. Cooling periods alternate with times of rejuvenation and eruption, in some cases demonstrably accompanying syn-eruptive regional rifting and mafic injection. Not only were the processes that developed the supersized Oruanui magma body unusually rapid, but this huge magma system was effectively reset and rebuilt on a comparably short timescale.  Major and trace element whole rock, glass and mineral chemistry of post-Oruanui eruptive products indicate how the host magma system re-established and evolved. The dacite units show wide variations in melt inclusion compositions and strongly zoned minerals consistent with interaction of less-evolved mafic magmas at a depths of >8 km, overlapping with the inferred base of the old Oruanui mush system. The dacites reflect the first products of the rebuilding silicic magma system, as most of the Oruanui mush was reconfigured or significantly modified in composition following thermal fluxing accompanying post-caldera collapse readjustment. The first (SG1) rhyolites erupted from 12 ka formed through shallow fractionation (4-5 km depth) and cooling of a parental melt similar in composition to the earlier dacite melts, with overlapping melt inclusion and crystal core compositions between the two magma types. For the younger rhyolite units, fine-scale temporal changes in melt chemistry and mineral phase stability occur over time, which are closely linked to the development, stabilisation and maturation of a new and likely unitary rhyolite mush system at Taupo. The new mush system is closely linked to and sometimes physically interacts with the underlying mafic melts, which are similar in composition to those involved in the Oruanui eruption and provide the long-term thermal and chemical driving force for magmatism. We consider that the new mush body has expanded to >250 km3 (and possibly up to 1000 km3) but has not yet been located by geophysical investigations.  For the most recent SG3 eruptions, the system once again underwent widespread destabilisation, resulting in increased levels of melt extraction from the silicic mush. Trends in whole-rock chemistry and close links between melt inclusions and mineral zoning with earlier units indicates that the 35 km3 Unit Y (Taupo eruption) melt dominant body formed in response to mafic disruption of the silicic mush pile. Associated Fe-Mg diffusion timescales in orthopyroxene suggest that Taupo is capable of changing behaviour and generating large eruptible melt bodies on timescales as short as decades to centuries. The 232 AD Unit Y eruption culminated from a critical combination of high differential tectonic stress build up, and increased potency in the silicic magma system resulting from elevated levels of mafic magma input, resulting in one of the largest and most violent worldwide Holocene eruptions. The post-Y magma system then responded to further disruption with the eruption of sub-lacustrine dome(s). Taupo is considered to be capable of rapidly recovering in its modern form to continue its hyperactive eruptive behaviour on timescales that are of human interest and concern.</p>


2021 ◽  
Author(s):  
Cyril Journeau ◽  
Sigrun Hreinsdottir ◽  
Ian Hamling

1992 ◽  
Vol 149 (2) ◽  
pp. 193-207 ◽  
Author(s):  
S. BLAKE ◽  
C. J. N. WILSON ◽  
I. E. M. SMITH ◽  
G. P. L. WALKER
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document