PULSATILE FLOW THROUGH DISTORTED CHANNELS: LOW-STROUHAL-NUMBER AND TRANSLATING-CRITICAL-LAYER EFFECTS

1985 ◽  
Vol 38 (4) ◽  
pp. 589-619 ◽  
Author(s):  
S. J. COWLEY
1987 ◽  
Vol 109 (1) ◽  
pp. 94-101 ◽  
Author(s):  
M. R. Back ◽  
Y. I. Cho ◽  
D. W. Crawford ◽  
L. H. Back

A flow visualization study using selective dye injection and frame by frame analysis of a movie provided qualitative and quantitative data on the motion of marked fluid particles in a 60 degree artery branch model for simulation of physiological femoral artery flow. Physical flow features observed included jetting of the branch flow into the main lumen during the brief reverse flow period, flow separation along the main lumen wall during the near zero flow phase of diastole when the core flow was in the downstream direction, and inference of flow separation conditions along the wall opposite the branch later in systole at higher branch flow ratios. There were many similarities between dye particle motions in pulsatile flow and the comparative steady flow observations.


2014 ◽  
Vol 754 ◽  
pp. 122-160 ◽  
Author(s):  
B. Min Yun ◽  
L. P. Dasi ◽  
C. K. Aidun ◽  
A. P. Yoganathan

AbstractProsthetic heart valves have been widely used to replace diseased or defective native heart valves. Flow through bileaflet mechanical heart valves (BMHVs) have previously demonstrated complex phenomena in the vicinity of the valve owing to the presence of two rigid leaflets. This study aims to accurately capture the complex flow dynamics for pulsatile flow through a 23 mm St Jude Medical (SJM) Regent™ BMHV. The lattice-Boltzmann method (LBM) is used to simulate pulsatile flow through the valve with the inclusion of reverse leakage flow at very high spatiotemporal resolution that can capture fine details in the pulsatile BMHV flow field. For higher-Reynolds-number flows, this high spatiotemporal resolution captures features that have not been observed in previous coarse resolution studies. In addition, the simulations are able to capture with detail the features of leaflet closing and the asymmetric b-datum leakage jet during mid-diastole. Novel flow physics are visualized and discussed along with quantification of turbulent features of this flow, which is made possible by this parallelized numerical method.


Author(s):  
Chain-Nan Yung ◽  
K.J. DeWitt ◽  
S. Subramanian ◽  
A.A. Afjeh ◽  
T.G. Keith

Author(s):  
Masaru Sumida

An experimental investigation of pulsatile flow through a tapered U-tube was performed to study the blood flow in the aorta. The experiments were carried out in a U-tube with a curvature radius ratio of 3.5 and a 50% reduction in the cross-sectional area from the entrance to the exit of the curved section. Velocity measurements were conducted by a laser Doppler velocimetry for a Womersley number of 10, a mean Dean number of 400 and a flow rate ratio of 1. The velocity profiles for pulsatile flow in the tapered U-tube were compared with the corresponding results in a U-tube having a uniform cross-sectional area. The striking effects of the tapering on the flow are exhibited in the axial velocity profiles in the section from the latter half of the bend to the downstream tangent immediately behind the bend exit. A depression in the velocity profile appears at a smaller turn angle Ω in the case of tapering, although the magnitude of the depression relative to the cross-sectional average velocity decreases. The value of β, which indicates the uniformity in the velocity profile over the cross section, decreases with increasing Ω, whereas it rapidly increases immediately behind the bend exit.


Author(s):  
John D. Martin

A computational fluid dynamics (CFD) study has been done comparing pulsatile and non-pulsatile blood flow through the aortic arch and its main branches. The pulsatile flow was to mimic the blood flow due to a beating heart and the non-pulsatile or steady flow was to mimic cardiopulmonary bypass (CPB). The purpose of the study was too narrow in on possible reasons CPB may contribute to the development of atherosclerosis. The main focus of the study was to look at the wall shear stress (WSS) values due to their close association with the development of atherosclerosis. In addition velocity and pressure data were also analyzed. The results of this study showed a stark contrast between the WSS values between the CPB model and the beating heart model. The CPB model did not have any points of oscillating WSS combined with the fact that there were regions of very high and very low constant WSS values in comparison with the beating heart analysis suggests that there may be potential for atherosclerotic development or plaque buildup within the artery. The beating heart model showed a range of WSS values within the aorta that were much lower overall compared with the CPB model.


Sign in / Sign up

Export Citation Format

Share Document