Direct numerical simulation of physiological pulsatile flow through a stenotic channel

Author(s):  
Abul Khair ◽  
Afzal Hossain ◽  
Bing-Chen Wang ◽  
David Kuhn ◽  
Mamun Molla
2009 ◽  
Vol 622 ◽  
pp. 259-290 ◽  
Author(s):  
M. D. DE TULLIO ◽  
A. CRISTALLO ◽  
E. BALARAS ◽  
R. VERZICCO

This work focuses on the direct numerical simulation of the pulsatile flow through a bileaflet mechanical heart valve under physiological conditions and in a realistic aortic root geometry. The motion of the valve leaflets has been computed from the forces exerted by the fluid on the structure both being considered as a single dynamical system. To this purpose the immersed boundary method, combined with a fluid–structure interaction algorithm, has shown to be an inexpensive and accurate technique for such complex flows. Several complete flow cycles have been simulated in order to collect enough phase-averaged statistics, and the results are in good agreement with experimental data obtained for a similar configuration. The flow analysis, strongly relying on the data accessibility provided by the numerical simulation, shows how some features of the leaflets motion depend on the flow dynamics and that the criteria for the red cell damages caused by the valve need to be formulated using very detailed analysis. In particular, it is shown that the standard Eulerian computation of the Reynolds stresses, usually employed to assess the risk of haemolysis, might not be adequate on several counts: (i) Reynolds stresses are only one part of the solicitation, the other part being the viscous stresses, (ii) the characteristic scales of the two solicitations are very different and the Reynolds stresses act on lengths much larger than the red cells diameter and (iii) the Eulerian zonal assessment of the stresses completely misses the information of time exposure to the solicitation which is a fundamental ingredient for the phenomenon of haemolysis. Accordingly, the trajectories of several fluid particles have been tracked in a Lagrangian way and the pointwise instantaneous viscous stress tensor has been computed along the paths. The tensor has been then reduced to an equivalent scalar using the von Mises criterion, and the blood damage index has been evaluated following Grigioni et al. (Biomech. Model Mechanobiol., vol. 4, 2005, p. 249).


2004 ◽  
Vol 18 (1) ◽  
pp. 1-14 ◽  
Author(s):  
C. Moulinec ◽  
M.J.B.M. Pourquié† ◽  
B.J. Boersma‡ ◽  
T. Buchal¶,§ ◽  
F.T.M. Nieuwstadt∥

Fluids ◽  
2022 ◽  
Vol 7 (1) ◽  
pp. 22
Author(s):  
Yury Shvetsov ◽  
Yury Khomyakov ◽  
Mikhail Bayaskhalanov ◽  
Regina Dichina

This paper presents the results of a numerical simulation to determine the hydraulic resistance for a transverse flow through the bundle of hexagonal rods. The calculations were carried out using the precision CFD code CONV-3D, intended for direct numerical simulation of the flow of an incompressible fluid (DNS-approximation) in the parts of fast reactors cooled by liquid metal. The obtained dependencies of the pressure drop and the coefficient of anisotropy of friction on the Reynolds number can be used in the thermal-hydraulic codes that require modeling of the flow in similar structures and, in particular, in the inter-wrapper space of the reactor core.


Author(s):  
Daniel A. Reasor ◽  
Jonathan R. Clausen ◽  
Cyrus K. Aidun

Blood is composed of a suspension of red blood cells (RBCs) suspended in plasma, and the presence of the RBCs substantially changes the flow characteristics and rheology of these suspensions. The viscosity of blood varies with the hematocrit (volume fraction of RBCs), which is a result not seen in Newtonian fluids. Additionally, RBCs are deformable, which can alter suspension dynamics. Understanding the physics in these flows requires accurately simulating the suspended phase to recover the microscale, and a subsequent analysis of the rheology to ascertain the continuum-level effects caused by the changes at the particle level. The direct numerical simulation of blood flow including RBC migration effects has the capability to resolve the Fåhraeus effect of observing low hematocrit values near walls, the subsequent cell-depleted layer, and the presence of velocity profile blunting due to the distribution of RBCs.


Sign in / Sign up

Export Citation Format

Share Document