Atmospheric Dispersion Models and Pre-Processing of Meteorological Data for Real-time Application

1993 ◽  
Vol 50 (2-4) ◽  
pp. 205-218
Author(s):  
T. Mikkelsen ◽  
F. Desiato (INVITED)
2021 ◽  
Author(s):  
Frances Beckett ◽  
Ralph Burton ◽  
Fabio Dioguardi ◽  
Claire Witham ◽  
John Stevenson ◽  
...  

<p>Atmospheric transport and dispersion models are used by Volcanic Ash Advisory Centers (VAACs) to provide timely information on volcanic ash clouds to mitigate the risk of aircraft encounters. Inaccuracies in dispersion model forecasts can occur due to the uncertainties associated with source terms, meteorological data and model parametrizations. Real-time validation of model forecasts against observations is therefore essential to ensure their reliability. Forecasts can also benefit from comparison to model output from other groups; through understanding how different modelling approaches, variations in model setups, model physics, and driving meteorological data, impact the predicted extent and concentration of ash. The Met Office, the National Centre for Atmospheric Science (NCAS) and the British Geological Survey (BGS) are working together to consider how we might compare data (both qualitatively and quantitatively) from the atmospheric dispersion models NAME, FALL3D and HYSPLIT, using meteorological data from the Met Office Unified Model and the NOAA Global Forecast System (providing an effective multi-model ensemble). Results from the model inter-comparison will be used to provide advice to the London VAAC to aid forecasting decisions in near real time during a volcanic ash cloud event. In order to facilitate this comparison, we developed a Python package (ash-model-plotting) to read outputs from the different models into a consistent structure. Here we present our framework for generating comparable plots across the different partners, with a focus on total column mass loading products. These are directly comparable to satellite data retrievals and therefore important for model validation. We also present outcomes from a recent modelling exercise and discuss next steps for further improving our forecast validation.</p>


2018 ◽  
Vol 57 (3) ◽  
pp. 645-657 ◽  
Author(s):  
Helen N. Webster ◽  
Thomas Whitehead ◽  
David J. Thomson

AbstractIn atmospheric dispersion models driven by meteorological data from numerical weather prediction (NWP) models, it is necessary to include a parameterization for plume spread that is due to unresolved mesoscale motions. These are motions that are not resolved by the input NWP data but are larger in size than the three-dimensional turbulent motions represented by turbulence parameterizations. Neglecting the effect of these quasi-two-dimensional unresolved mesoscale motions has been shown to lead to underprediction of plume spread and overprediction of concentrations within the plume. NWP modeling is conducted at a range of resolutions that resolve different scales of motion. This suggests that any parameterization of unresolved mesoscale motions should depend on the resolution of the input NWP data. Spectral analysis of NWP data and wind observations is used to assess the mesoscale motions unresolved by the NWP model. Appropriate velocity variances and Lagrangian time scales for these motions are found by calculating the missing variance in the energy spectra and analyzing correlation functions. A strong dependence on the resolution of the NWP data is seen, resulting in larger velocity variances and Lagrangian time scales from the lower-resolution models. A parameterization of unresolved mesoscale motions on the basis of the NWP resolution is proposed.


2021 ◽  
Author(s):  
Bonaventure Fontanier ◽  
Pramod Kumar ◽  
Grégoire Broquet ◽  
Christopher Caldow ◽  
Olivier Laurent ◽  
...  

<p>Methane (CH<sub>4</sub>) is a powerful greenhouse gas which plays a major role in climate change. The accurate monitoring of emissions from industrial facilities is needed to ensure efficient emission mitigation strategies. Local-scale atmospheric inversions are increasingly being used to provide estimates of the rates and/or locations of CH<sub>4</sub> sources from industrial sites. They rely on local-scale atmospheric dispersion models, CH<sub>4</sub> measurements and inversion approaches. Gaussian plume models have often been used for local-scale atmospheric dispersion modelling and inversions of emissions, because of their simplicity and good performance when used in a flat terrain and relatively constant mean wind conditions. However, even in such conditions, failure to account for wind and mole fraction variability can limit the ability to exploit the full potential of these measurements at high frequency.</p><p>We study whether the accuracy of inversions can be increased by the use of more complex dispersion models. Our assessments are based on the analysis of 25 to 75-min CH<sub>4 </sub>controlled releases during a one-week campaign in October 2019 at the TOTAL’s TADI operative platform in Lacq, France (in a flat area). During this campaign, for each controlled release, we conducted near-surface in situ measurements of CH<sub>4</sub> mole fraction from both a mobile vehicle and a circle of fixed points around the emission area. Our inversions based on a Gaussian model and either the mobile or fixed-point measurements both provided estimates of the release rates with 20-30% precision.  </p><p>Here we focus on comparisons between modeling and inversion results when using this Gaussian plume model, a Lagrangian model “GRAL” and a Gaussian puff model. The parameters for the three models are based on high-frequency meteorological values from a single stationary 3D sonic anemometer. GRAL should have relatively good skills under low-wind speed conditions. The Gaussian puff is a light implementation of time-dependent modeling and can be driven by high-frequency meteorological data. The performance of these dispersion models is evaluated with various metrics from the observation field that are relevant for the inversion. These analyses lead to the exploration of new types of definitions of the observational constraint for the inversions with the Gaussian puff model, when using the timeseries from fixed measurement points. The definitions explore a range of metrics in the time domain as well as in the frequency domain.</p><p>Eventually, the Lagrangian model does not outperform the Gaussian plume model in these experiments, its application being notably limited by the short scales of the transport characteristics. On the other hand, the Gaussian puff model provides promising results for the inversion, in particular, in terms of comparison between the simulated and observed timeseries for fixed stations. Its performance when driven by a spatially uniform wind field is an incentive to explore the use of meteorological data from several sonic stations to parameterize its configuration. The fixed-point measurements are shown to allow for more robust inversions of the source location than the mobile measurements, with an average source localization error of the order of 10 m.</p>


2002 ◽  
Vol 18 (1) ◽  
pp. 22 ◽  
Author(s):  
D.J. Hall ◽  
A.M. Spanton ◽  
M. Bennett ◽  
F. Dunkerley ◽  
R.F. Griffiths ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document