Dose area product reference levels in dental panoramic radiology

2004 ◽  
Vol 111 (3) ◽  
pp. 283-287 ◽  
Author(s):  
C. E. Tierris
2021 ◽  
Vol 94 (1117) ◽  
pp. 20190878
Author(s):  
Anna Kropelnicki ◽  
Rosemary Eaton ◽  
Alexandra Adamczyk ◽  
Jacqueline Waterman ◽  
Pegah Mohaghegh

Objective: Mini C-arm fluoroscopes are widely used by orthopaedic surgeons for intraoperative image guidance without the need for radiographers. This puts the responsibility for radiation exposure firmly with the operating surgeon. In order to maintain safe and best practice under U.K. Ionising Radiation (Medical Exposure) Regulations, one must limit radiation exposure and audit performance using national diagnostic reference levels (DRLs). In the case of the mini C-arm, there are no national DRLs. IR(ME)R, therefore, require the establishment of local DRLs by each hospital to act as an alternative guideline for safe radiation use. The aim of our audit was to establish local DRLs based on our experience operating with the use of the mini C-arm over the last 7 years. Methods: This retrospective audit evaluates the end dose–area product (DAP) recorded for common trauma and orthopaedic procedures using the mini C-arm in a busy district general hospital. We present the quartile data and have set the cut-off point as the third quartile for formulating the local DRLs, consistent with the methodology for the conventional fluoroscope. Results: For our data set (n = 1664), the third quartile DAP values were lowest for surgeries to the forearm (5.38 cGycm2), hand (7.62 cGycm2), and foot/ankle (8.56 cGycm2), and highest for wrist (10.64 cGycm2) and elbow (14.61 cGycm2) procedures. Advances in knowledge: To our knowledge, this is the largest data set used to establish local DRLs. Other centres may find our guidelines useful whilst they establish their own local DRLs.


2009 ◽  
Vol 13 (2) ◽  
pp. 24
Author(s):  
T Nyathi ◽  
M L Pule ◽  
P Segone ◽  
D G Van der Merwe ◽  
S P Rapoho

Purpose: To retrospectively analyze the radiation doses delivered to patients undergoing fluoroscopy examinations in terms of the skin dose and the dose-area product (DAP). Materials and Methods: The subjects of this study were patients who underwent fluoroscopy examinations at Charlotte Maxeke Johannesburg Academic Hospital, South Africa during the period August 2007 to March 2008. The skin dose and dose-area product values were obtained from a built-in DAP-meter installed on a digital Philips Medical Systems MultiDiagnost Eleva fluoroscopy unit. The following cases were analyzed namely barium swallow, barium meal, barium enema, hexabrix swallow, gastrografin meal, voiding cystourethrogram, fistulogram, myelogram, nephrostomy and loopogram. Results: An analysis of three hundred and thirty one examinations is presented. From the recorded data the following quantities were deduced: the mean- and range of the skin doses and DAPs, mean screening time and mean fluoroscopy duration. An analysis of the screening time for the various examinations showed a weak correlation (r = 0.59) between skin dose and screening time, while a poor correlation (r = 0.42) was deduced between DAP reading and screening time. Conclusion: There is a wide spread in the radiation doses registered for any one given type of examination. The large variability in the radiation dose delivered proves that fluoroscopic examinations stand to gain from dose optimization. The usefulness and potential use of DAP meters with regards to dose optimization in radiology is shown. In line with efforts to optimize dose from diagnostic radiography examinations the authors recommend the establishment of diagnostic reference levels (DRLs) in South Africa for the most frequent examinations in general radiography, fluoroscopy, mammography and computed tomography. Keywords: patient dose, genetic risk, dose optimization, dose reference levels


2020 ◽  
Vol 33 (6) ◽  
pp. 838-844
Author(s):  
Jan-Helge Klingler ◽  
Ulrich Hubbe ◽  
Christoph Scholz ◽  
Florian Volz ◽  
Marc Hohenhaus ◽  
...  

OBJECTIVEIntraoperative 3D imaging and navigation is increasingly used for minimally invasive spine surgery. A novel, noninvasive patient tracker that is adhered as a mask on the skin for 3D navigation necessitates a larger intraoperative 3D image set for appropriate referencing. This enlarged 3D image data set can be acquired by a state-of-the-art 3D C-arm device that is equipped with a large flat-panel detector. However, the presumably associated higher radiation exposure to the patient has essentially not yet been investigated and is therefore the objective of this study.METHODSPatients were retrospectively included if a thoracolumbar 3D scan was performed intraoperatively between 2016 and 2019 using a 3D C-arm with a large 30 × 30–cm flat-panel detector (3D scan volume 4096 cm3) or a 3D C-arm with a smaller 20 × 20–cm flat-panel detector (3D scan volume 2097 cm3), and the dose area product was available for the 3D scan. Additionally, the fluoroscopy time and the number of fluoroscopic images per 3D scan, as well as the BMI of the patients, were recorded.RESULTSThe authors compared 62 intraoperative thoracolumbar 3D scans using the 3D C-arm with a large flat-panel detector and 12 3D scans using the 3D C-arm with a small flat-panel detector. Overall, the 3D C-arm with a large flat-panel detector required more fluoroscopic images per scan (mean 389.0 ± 8.4 vs 117.0 ± 4.6, p < 0.0001), leading to a significantly higher dose area product (mean 1028.6 ± 767.9 vs 457.1 ± 118.9 cGy × cm2, p = 0.0044).CONCLUSIONSThe novel, noninvasive patient tracker mask facilitates intraoperative 3D navigation while eliminating the need for an additional skin incision with detachment of the autochthonous muscles. However, the use of this patient tracker mask requires a larger intraoperative 3D image data set for accurate registration, resulting in a 2.25 times higher radiation exposure to the patient. The use of the patient tracker mask should thus be based on an individual decision, especially taking into considering the radiation exposure and extent of instrumentation.


2016 ◽  
Vol 43 (7) ◽  
pp. 4085-4092 ◽  
Author(s):  
S. Dufreneix ◽  
A. Ostrowsky ◽  
B. Rapp ◽  
J. Daures ◽  
J. M. Bordy

Sign in / Sign up

Export Citation Format

Share Document