Geographic Origin of Human Mitochondrial DNA Revisited

1992 ◽  
Vol 41 (3) ◽  
pp. 384-391 ◽  
Author(s):  
M. Stoneking ◽  
S. T. Sherry ◽  
L. Vigilant
1992 ◽  
Vol 41 (3) ◽  
pp. 384 ◽  
Author(s):  
Mark Stoneking ◽  
Stephen T. Sherry ◽  
Linda Vigilant

2011 ◽  
Vol 43 (13) ◽  
pp. 789-798 ◽  
Author(s):  
Nir Eynon ◽  
María Morán ◽  
Ruth Birk ◽  
Alejandro Lucia

Aerobic ATP generation by the mitochondrial respiratory oxidative phosphorylation system (OXPHOS) is a vital metabolic process for endurance exercise. Notably, mitochondrial DNA (mtDNA) codifies 13 of the 83 polypeptides implied in the respiratory chain. As such, there is a strong rationale for identifying an association between mtDNA variants and “aerobic” (endurance) exercise phenotypes. The aim of this review is to summarize current knowledge on the association between mtDNA, nuclear genes involved in mitochondriogenesis, and elite endurance athletic status. Several studies in nonathletic people have demonstrated an association between certain mtDNA lineages and aerobic performance, characterized by maximal oxygen uptake (V̇o2max). Whether mtDNA haplogroups are also associated with the status of being an elite endurance athlete is more controversial, with differences between studies arising from the different ethnic backgrounds of the athletic cohorts (Caucasian of mixed geographic origin, Asiatic, or East African).


Biochemistry ◽  
2000 ◽  
Vol 39 (7) ◽  
pp. 1702-1708 ◽  
Author(s):  
Allison A. Johnson ◽  
Yu-chih Tsai ◽  
Steven W. Graves ◽  
Kenneth A. Johnson

2007 ◽  
Vol 367 (5) ◽  
pp. 1382-1391 ◽  
Author(s):  
Tawn D. Ziebarth ◽  
Carol L. Farr ◽  
Laurie S. Kaguni

1982 ◽  
Vol 2 (1) ◽  
pp. 30-41
Author(s):  
N A Oliver ◽  
D C Wallace

Two mitochondrially synthesized marker polypeptides, MV-1 and MV-2, were found in human HeLa and HT1080 cells. These were assigned to the mitochondrial DNA in HeLa-HT1080 cybrids and hybrids by demonstrating their linkage to cytoplasmic genetic markers. These markers include mitochondrial DNA restriction site polymorphisms and resistance to chloramphenicol, an inhibitor of mitochondrial protein synthesis. In the absence of chloramphenicol, the expression of MV-1 and MV-2 in cybrids and hybrids was found to be directly proportional to the ratio of the parental mitochondrial DNAs. In the presence of chloramphenicol, the marker polypeptide linked to the chloramphenicol-sensitive mitochondrial DNA continued to be expressed. This demonstrated that resistant and sensitive mitochondrial DNAs can cooperate within a cell for gene expression and that the CAP-resistant allele was dominant or codominant to sensitive. Such cooperation suggests that mitochondrial DNAs can be exchanged between mitochondria.


Sign in / Sign up

Export Citation Format

Share Document