mitochondrial dnas
Recently Published Documents


TOTAL DOCUMENTS

173
(FIVE YEARS 8)

H-INDEX

38
(FIVE YEARS 1)

Insects ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 963
Author(s):  
Lele Ding ◽  
Huiling Sang ◽  
Cheng Sun

In eukaryotes, DNA of mitochondria is transferred into the nucleus and forms nuclear mitochondrial DNAs (NUMTs). Taking advantage of the abundant genomic resources for bumblebees, in this study, we de novo generated mitochondrial genomes (mitogenomes) for 11 bumblebee species. Then, we identified and characterized NUMTs in genus-wide bumblebee species. The number of identified NUMTs varies across those species, with numbers ranging from 32 to 72, and nuclear genome size is not positively related to NUMT number. The insertion sites of NUMTs in the nuclear genome are not random, with AT-rich regions harboring more NUMTs. In addition, our results suggest that NUMTs derived from the mitochondrial COX1 gene are most abundant in the bumblebee nuclear genome. Although the majority of NUMTs are found within intergenic regions, some NUMTs do reside within genic regions. Transcripts that contain both the NUMT sequence and its flanking non-NUMT sequences could be found in the bumblebee transcriptome, suggesting a potential domestication of NUMTs in the bumblebee. Taken together, our results shed light on the molecular features of NUMTs in the bumblebee and uncover their contribution to genome innovation.


Author(s):  
Francisco Callejas-Hernández ◽  
Alfonso Herreros-Cabello ◽  
Javier del Moral-Salmoral ◽  
Manuel Fresno ◽  
Núria Gironès

The mitochondrial DNA of Trypanosomatids, known as the kinetoplast DNA or kDNA or mtDNA, consists of a few maxicircles and thousands of minicircles concatenated together into a huge complex network. These structures present species-specific sizes, from 20 to 40 Kb in maxicircles and from 0.5 to 10 Kb in minicircles. Maxicircles are equivalent to other eukaryotic mitochondrial DNAs, while minicircles contain coding guide RNAs involved in U-insertion/deletion editing processes exclusive of Trypanosomatids that produce the maturation of the maxicircle-encoded transcripts. The knowledge about this mitochondrial genome is especially relevant since the expression of nuclear and mitochondrial genes involved in oxidative phosphorylation must be coordinated. In Trypanosoma cruzi (T. cruzi), the mtDNA has a dual relevance; the production of energy, and its use as a phylogenetic marker due to its high conservation among strains. Therefore, this study aimed to assemble, annotate, and analyze the complete repertoire of maxicircle and minicircle sequences of different T. cruzi strains by using DNA sequencing. We assembled and annotated the complete maxicircle sequence of the Y and Bug2148 strains. For Bug2148, our results confirm that the maxicircle sequence is the longest assembled to date, and is composed of 21 genes, most of them conserved among Trypanosomatid species. In agreement with previous results, T. cruzi minicircles show a conserved structure around 1.4 Kb, with four highly conserved regions and other four hypervariable regions interspersed between them. However, our results suggest that the parasite minicircles display several sizes and numbers of conserved and hypervariable regions, contrary to those previous studies. Besides, this heterogeneity is also reflected in the three conserved sequence blocks of the conserved regions that play a key role in the minicircle replication. Our results using sequencing technologies of second and third-generation indicate that the different consensus sequences of the maxicircles and minicircles seem to be more complex than previously described indicating at least four different groups in T. cruzi minicircles.


2021 ◽  
Author(s):  
Lyle T. Wallace ◽  
Michael J. Havey

Abstract Passage of the highly inbred line ‘B’ of cucumber through cell cultures has produced regenerated plants with a mosaic (MSC) phenotype on cotyledons and leaves, as well as rearrangements in the mitochondrial DNA. Both of these characteristics show paternal transmission. MSC3 and MSC16 were derived from independent cell-culture experiments and have distinct mosaic phenotypes and different under-represented regions in their mitochondrial DNAs. A nuclear locus, Psm for paternal transmission of mitochondria, conditions a high proportion of wild type progenies when MSC16 is crossed as the male with female plants carrying the Psm- allele. Plants with homozygous genotypes at Psm were crossed with both MSC3 and MSC16, and segregation of wild-type versus mosaic progenies in these families were not consistent suggesting that sorting of wild-type progenies from crosses with MSC3 and MSC16 have different genetic bases. We identified cucumber plants that produced a high proportion of wild-type progenies in crosses with MSC3 as the male parent. Plants from a segregating F2 family were crossed with MSC3 as the male and progenies scored for numbers of mosaic versus wild-type progenies. The same F2 plants were genotyped-by-sequencing and single nucleotide polymorphisms identified for genetic mapping. Quantitative analysis of the proportion of wild-type testcross progenies identified a major quantitative trait locus (QTL) in the same genomic region as the Psm locus; however the most significant SNP associated with this QTL was located approximately 856 kilobases from Psm. Eventual identification of a candidate gene controlling this unique mitochondrial sorting in cucumber should reveal important aspects of mitochondrial-nuclear interactions affecting the prevalence of specific mitochondrial DNAs.


IUBMB Life ◽  
2020 ◽  
Author(s):  
Ana Victoria Lechuga‐Vieco ◽  
Raquel Justo‐Méndez ◽  
José Antonio Enríquez
Keyword(s):  

2020 ◽  
Vol 20 (1) ◽  
Author(s):  
C. Kay ◽  
T. A. Williams ◽  
W. Gibson

Abstract Background Trypanosomes are single-celled eukaryotic parasites characterised by the unique biology of their mitochondrial DNA. African livestock trypanosomes impose a major burden on agriculture across sub-Saharan Africa, but are poorly understood compared to those that cause sleeping sickness and Chagas disease in humans. Here we explore the potential of the maxicircle, a component of trypanosome mitochondrial DNA to study the evolutionary history of trypanosomes. Results We used long-read sequencing to completely assemble maxicircle mitochondrial DNA from four previously uncharacterized African trypanosomes, and leveraged these assemblies to scaffold and assemble a further 103 trypanosome maxicircle gene coding regions from published short-read data. While synteny was largely conserved, there were repeated, independent losses of Complex I genes. Comparison of pre-edited and non-edited genes revealed the impact of RNA editing on nucleotide composition, with non-edited genes approaching the limits of GC loss. African tsetse-transmitted trypanosomes showed high levels of RNA editing compared to other trypanosomes. The gene coding regions of maxicircle mitochondrial DNAs were used to construct time-resolved phylogenetic trees, revealing deep divergence events among isolates of the pathogens Trypanosoma brucei and T. congolense. Conclusions Our data represents a new resource for experimental and evolutionary analyses of trypanosome phylogeny, molecular evolution and function. Molecular clock analyses yielded a timescale for trypanosome evolution congruent with major biogeographical events in Africa and revealed the recent emergence of Trypanosoma brucei gambiense and T. equiperdum, major human and animal pathogens.


2020 ◽  
Vol 12 (8) ◽  
pp. 1440-1443
Author(s):  
David Roy Smith

Abstract Recently, Stampar et al. (2019. Linear mitochondrial genome in Anthozoa (Cnidaria): a case study in. Sci Rep. 9(1):6094.) uncovered highly atypical mitochondrial genome structures in the cnidarian species Pachycerianthus magnus and Isarachnanthus nocturnus (Anthozoa, Ceriantharia). These two mitochondrial DNAs assembled as linear fragmented genomes, comprising eight and five chromosomes, respectively—architectures unlike any other anthozoan mitogenome described to date. What’s more, they have cumulative lengths of 77.8 (P. magnus) and 80.9 kb (I. nocturnus), making them the largest animal mitochondrial DNAs on record, a finding which garnered significant attention by various news media. Here, I take a closer look at the work of Stampar et al. and question their key results. I provide evidence that the currently available mitogenome sequences for I. nocturnus and P. magnus, including their structures, sizes, and chromosome numbers, should be treated with caution. More work must be done on these genomes before one can say with any certainty that they are linear, fragmented, or the largest animal mitogenomes observed to date.


2019 ◽  
Vol 11 (10) ◽  
pp. 2774-2788 ◽  
Author(s):  
Hsin-Han Lee ◽  
Huei-Mien Ke ◽  
Chan-Yi Ivy Lin ◽  
Tracy J Lee ◽  
Chia-Lin Chung ◽  
...  

Abstract Comparative genomics of fungal mitochondrial genomes (mitogenomes) have revealed a remarkable pattern of rearrangement between and within major phyla owing to horizontal gene transfer and recombination. The role of recombination was exemplified at a finer evolutionary time scale in basidiomycetes group of fungi as they display a diversity of mitochondrial DNA inheritance patterns. Here, we assembled mitogenomes of six species from the Hymenochaetales order of basidiomycetes and examined 59 mitogenomes from 2 genetic lineages of Phellinus noxius. Gene order is largely collinear, while intergene regions are major determinants of mitogenome size variation. Substantial sequence divergence was found in shared introns consistent with high horizontal gene transfer frequency observed in yeasts, but we also identified a rare case where an intron was retained in five species since speciation. In contrast to the hyperdiversity observed in nuclear genomes of Phellinus noxius, mitogenomes’ intraspecific polymorphisms at protein-coding sequences are extremely low. Phylogeny network based on introns revealed turnover as well as exchange of introns between two lineages. Strikingly, some strains harbor a mosaic origin of introns from both lineages. Analysis of intergenic sequence indicated substantial differences between and within lineages, and an expansion may be ongoing as a result of exchange between distal intergenes. These findings suggest that the evolution in mitochondrial DNAs is usually lineage specific but chimeric mitotypes are frequently observed, thus capturing the possible evolutionary processes shaping mitogenomes in a basidiomycete. The large mitogenome sizes reported in various basidiomycetes appear to be a result of interspecific reshuffling of intergenes.


2017 ◽  
Vol 38 (6) ◽  
pp. 869-875 ◽  
Author(s):  
A. Lopez-Oceja ◽  
D. Gamarra ◽  
S. Cardoso ◽  
L. Palencia-Madrid ◽  
R. A. Juste ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document