ht1080 cells
Recently Published Documents


TOTAL DOCUMENTS

113
(FIVE YEARS 15)

H-INDEX

26
(FIVE YEARS 4)

2021 ◽  
pp. jmedgenet-2021-108061
Author(s):  
Sarah Verheyen ◽  
Jasmin Blatterer ◽  
Michael R Speicher ◽  
Gandham SriLakshmi Bhavani ◽  
Geert-Jan Boons ◽  
...  

BackgroundMucopolysaccharidoses (MPS) are monogenic metabolic disorders that significantly affect the skeleton. Eleven enzyme defects in the lysosomal degradation of glycosaminoglycans (GAGs) have been assigned to the known MPS subtypes (I–IX). Arylsulfatase K (ARSK) is a recently characterised lysosomal hydrolase involved in GAG degradation that removes the 2-O-sulfate group from 2-sulfoglucuronate. Knockout of Arsk in mice was consistent with mild storage pathology, but no human phenotype has yet been described.MethodsIn this study, we report four affected individuals of two unrelated consanguineous families with homozygous variants c.250C>T, p.(Arg84Cys) and c.560T>A, p.(Leu187Ter) in ARSK, respectively. Functional consequences of the two ARSK variants were assessed by mutation-specific ARSK constructs derived by site-directed mutagenesis, which were ectopically expressed in HT1080 cells. Urinary GAG excretion was analysed by dimethylene blue and electrophoresis, as well as liquid chromatography/mass spectrometry (LC-MS)/MS analysis.ResultsThe phenotypes of the affected individuals include MPS features, such as short stature, coarse facial features and dysostosis multiplex. Reverse phenotyping in two of the four individuals revealed additional cardiac and ophthalmological abnormalities. Mild elevation of dermatan sulfate was detected in the two subjects investigated by LC-MS/MS. Human HT1080 cells expressing the ARSK-Leu187Ter construct exhibited absent protein levels by western blot, and cells with the ARSK-Arg84Cys construct showed markedly reduced enzyme activity in an ARSK-specific enzymatic assay against 2-O-sulfoglucuronate-containing disaccharides as analysed by C18-reversed-phase chromatography followed by MS.ConclusionOur work provides a detailed clinical and molecular characterisation of a novel subtype of mucopolysaccharidosis, which we suggest to designate subtype X.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Basudeb Das ◽  
Neha Jain ◽  
Bibekanand Mallick

AbstractResistance to doxorubicin (DOX) is an obstacle to successful sarcoma treatment and a cause of tumor relapse, with the underlying molecular mechanism still unknown. PIWI-interacting RNAs (piRNAs) have been shown to enhance patient outcomes in cancers. However, there are few or no reports on piRNAs affecting chemotherapy in cancers, including fibrosarcoma. The current study aims to investigate the relationship between piR-39980 and DOX resistance and the underlying mechanisms. We reveal that piR-39980 is less expressed in DOX-resistant HT1080 (HT1080/DOX) fibrosarcoma cells. Our results show that inhibition of piR-39980 in parental HT1080 cells induces DOX resistance by attenuating intracellular DOX accumulation, DOX-induced apoptosis, and anti-proliferative effects. Its overexpression in HT1080/DOX cells, on the other hand, increases DOX sensitivity by promoting intracellular DOX accumulation, DNA damage, and apoptosis. The dual-luciferase reporter assay indicates that piR-39980 negatively regulates RRM2 and CYP1A2 via direct binding to their 3′UTRs. Furthermore, overexpressing RRM2 induces DOX resistance of HT1080 cells by rescuing DOX-induced DNA damage by promoting DNA repair, whereas CYP1A2 confers resistance by decreasing intracellular DOX accumulation, which piR-39980 restores. This study reveals that piR-39980 could reduce fibrosarcoma resistance to DOX by modulating RRM2 and CYP1A2, implying that piRNA can be used in combination with DOX.


Toxicon ◽  
2021 ◽  
Vol 202 ◽  
pp. 60-66
Author(s):  
Kourosh Azizi ◽  
Azadeh Hamedi ◽  
Negar Azarpira ◽  
Azar Hamedi ◽  
Masoumeh Shahini ◽  
...  

2020 ◽  
Author(s):  
Elisa Pesenti ◽  
Mikhail Liskovykh ◽  
Koei Okazaki ◽  
Alessio Mallozzi ◽  
Caitlin Reid ◽  
...  

AbstractHuman Artificial Chromosomes (HACs) are important tools for epigenetic engineering, for measuring chromosome instability (CIN) and possible gene therapy. However, their use in the latter is potentially limited because the input HAC-seeding DNA can undergo an unpredictable series of rearrangements during HAC formation. As a result, after transfection and HAC formation, each cell clone contains a HAC with a unique structure that cannot be precisely predicted from the structure of the HAC-seeding DNA. Although it has been reported that these rearrangements can happen, the timing and mechanism of their formation has yet to be described. Here we synthesized a HAC-seeding DNA with two distinct structural domains and introduced it into HT1080 cells. We characterized a number of HAC-containing clones and subclones to track DNA rearrangements during HAC establishment. We demonstrated that rearrangements can occur early during HAC formation. Subsequently, the established HAC genomic organization is stably maintained across many cell generations. Thus, early stages in HAC formation appear to at least occasionally involve a process of DNA shredding and shuffling that resembles chromothripsis, an important hallmark of many cancer types. Understanding these events during HAC formation has critical implications for future efforts aimed at synthesizing and exploiting synthetic human chromosomes.


2020 ◽  
Vol 11 (2) ◽  
pp. 39 ◽  
Author(s):  
Anastasiya V. Snigireva ◽  
Oleg S. Morenkov ◽  
Yuri Y. Skarga ◽  
Alexander V. Lisov ◽  
Zoya A. Lisova ◽  
...  

The extracellular cell surface-associated and soluble heat shock protein 90 (Hsp90) is known to participate in the migration and invasion of tumor cells. Earlier, we demonstrated that plasma membrane-associated heparan sulfate proteoglycans (HSPGs) bind the extracellular Hsp90 and thereby promote the Hsp90-mediated motility of tumor cells. Here, we showed that a conjugate of 2,5-dihydroxybenzoic acid with gelatin (2,5-DHBA–gelatin), a synthetic polymer with heparin-like properties, suppressed the basal (unstimulated) migration and invasion of human glioblastoma A-172 and fibrosarcoma HT1080 cells, which was accompanied by the detachment of a fraction of Hsp90 from cell surface HSPGs. The polymeric conjugate also inhibited the migration/invasion of cells stimulated by exogenous soluble native Hsp90, which correlated with the inhibition of the attachment of soluble Hsp90 to cell surface HSPGs. The action of the 2,5-DHBA–gelatin conjugate on the motility of A-172 and HT1080 cells was similar to that of heparin. The results demonstrate a potential of the 2,5-DHBA–gelatin polymer for the development of antimetastatic drugs targeting cell motility and a possible role of extracellular Hsp90 in the suppression of the migration and invasion of tumor cells mediated by the 2,5-DHBA–gelatin conjugate and heparin.


Author(s):  
Maqusood Ahamed ◽  
Mohd Javed Akhtar ◽  
Hisham A. Alhadlaq

Widespread application of silica nanoparticles (nSiO2) and ubiquitous metalloid arsenic (As) may increase their chances of co-exposure to human beings in daily life. Nonetheless, studies on combined effects of nSiO2 and As in human cells are lacking. We investigated the co-exposure effects of nSiO2 and As in human liver (HepG2) and human fibroblast (HT1080) cells. Results showed that nSiO2 did not cause cytotoxicity. However, exposure of As caused oxidative stress and apoptosis in both types of cells. Interesting results were that co-exposure of a non-cytotoxic concentration of nSiO2 significantly augmented the As induced toxicity in both cells. Intracellular level of As was higher in the co-exposure group (nSiO2 + As) than the As group alone, suggesting that nSiO2 facilitates the cellular uptake of As. Co-exposure of nSiO2 and As potentiated oxidative stress indicated by pro-oxidants generation (reactive oxygen species, hydrogen peroxide and lipid peroxidation) and antioxidants depletion (glutathione level, and glutathione reductase, superoxide dismutase and catalase activities). In addition, co-exposure of nSiO2 and As also potentiated mitochondria-mediated apoptosis suggested by increased expression of p53, bax, caspase-3 and caspase-9 genes (pro-apoptotic) and decreased expression of bcl-2 gene (anti-apoptotic) along with depleted mitochondrial membrane potential. To the best of our knowledge, this is the first study showing that co-exposure of nSiO2 and As induced augmentation of oxidative stress and mitochondria-mediated apoptosis in HepG2 and HT1080 cells. Hence, careful attention is required for human health assessment following combined exposure to nSiO2 and As.


2019 ◽  
Vol 67 (32) ◽  
pp. 8855-8867 ◽  
Author(s):  
Fang Gong ◽  
Mei-Fang Chen ◽  
Jiali Chen ◽  
ChengYong Li ◽  
ChunXia Zhou ◽  
...  

AIChE Journal ◽  
2019 ◽  
Vol 66 (3) ◽  
Author(s):  
Tiana D. Warren ◽  
Krishna Patel ◽  
Jordan L. Rivera ◽  
James R. Eshleman ◽  
Marc Ostermeier

2019 ◽  
Vol 30 (12) ◽  
pp. 1477-1489 ◽  
Author(s):  
Chad D. Williamson ◽  
Julie G. Donaldson

Macropinocytosis is an actin-driven form of clathrin-independent endocytosis that generates an enlarged structure, the macropinosome. Although many studies focus on signaling molecules and phosphoinositides involved in initiating macropinocytosis, the commitment to forming a macropinosome and the handling of that membrane have not been studied in detail. Here we show in HT1080 cells, a human fibrosarcoma cell line, a requirement for microtubules, dynein, the JIP3 microtubule motor scaffold protein, and Arf6, a JIP3 interacting protein, for the formation and inward movement of the macropinosome. While actin and myosin II also play critical roles in the formation of ruffling membrane, microtubules provide an important tract for initiation, sealing, and transport of the macropinosome through the actin- and myosin-rich lamellar region.


Sign in / Sign up

Export Citation Format

Share Document