scholarly journals Comparison of in vitro and in vivo human skin responses to consumer products and ingredients with a range of irritancy potential

1999 ◽  
Vol 48 (2) ◽  
pp. 218-229 ◽  
Author(s):  
M. Perkins
1991 ◽  
Vol 87 (1) ◽  
pp. 222
Author(s):  
C PRESTI ◽  
B ZWEIMAN ◽  
C VONALLMEN ◽  
R LAYKER ◽  
P ATKINS
Keyword(s):  

1989 ◽  
Vol 8 (5) ◽  
pp. 853-859 ◽  
Author(s):  
Ronald C. Wester ◽  
Howard I. Maibach

Contaminants exist in ground and surface water. Human skin has the capacity to bind and then absorb these contaminants into the body during swimming and bathing. Powdered human stratum corneum will bind both lipid-soluble (alachlor, polychlorinated biphenyls [PCBs], benzene) and water-soluble (nitroaniline) chemicals. In vitro (human skin) and in vivo (Rhesus monkey) studies show that these chemicals readily distribute into skin, and then some of the chemical is absorbed into the body. Linearity in binding and absorption exists for nitroaniline over a 10-fold concentration range. Multiple exposure to benzene is at least cumulative. Binding and absorption can be significant for exposures as short as 30 min, and will increase with time. Absorption with water dilution increased for alachlor, but not for dinoseb. Soap reversed the partitioning of alachlor between human stratum corneum and water. The PCBs could be removed from skin by soap and water (70% efficiency) for up to 3 h and then decontamination potential decreased, due to continuing skin absorption. The model in vitro and in vivo systems used should permit easy estimation of this area of extensive human exposure effect on risk assessment.


2017 ◽  
Vol 309 (4) ◽  
pp. 275-283 ◽  
Author(s):  
Wen-Hwa Li ◽  
Heng-Kuan Wong ◽  
José Serrano ◽  
Manpreet Randhawa ◽  
Simarna Kaur ◽  
...  
Keyword(s):  

2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Jianan Zhang ◽  
Morgan E. Walker ◽  
Katherine Z. Sanidad ◽  
Hongna Zhang ◽  
Yanshan Liang ◽  
...  

AbstractEmerging research supports that triclosan (TCS), an antimicrobial agent found in thousands of consumer products, exacerbates colitis and colitis-associated colorectal tumorigenesis in animal models. While the intestinal toxicities of TCS require the presence of gut microbiota, the molecular mechanisms involved have not been defined. Here we show that intestinal commensal microbes mediate metabolic activation of TCS in the colon and drive its gut toxicology. Using a range of in vitro, ex vivo, and in vivo approaches, we identify specific microbial β-glucuronidase (GUS) enzymes involved and pinpoint molecular motifs required to metabolically activate TCS in the gut. Finally, we show that targeted inhibition of bacterial GUS enzymes abolishes the colitis-promoting effects of TCS, supporting an essential role of specific microbial proteins in TCS toxicity. Together, our results define a mechanism by which intestinal microbes contribute to the metabolic activation and gut toxicity of TCS, and highlight the importance of considering the contributions of the gut microbiota in evaluating the toxic potential of environmental chemicals.


2016 ◽  
Vol 32 (3) ◽  
pp. 723-738 ◽  
Author(s):  
Chi-Chuan Li ◽  
Fu-Shun Yu ◽  
Ming-Jen Fan ◽  
Ya-Yin Chen ◽  
Jin-Cherng Lien ◽  
...  

1988 ◽  
Vol 94 (3) ◽  
pp. 773-780 ◽  
Author(s):  
R.M. Barr ◽  
O. Koro ◽  
D.M. Francis ◽  
A. Kobza Black ◽  
T. Numata ◽  
...  

2000 ◽  
Vol 74 (3) ◽  
pp. 203-208 ◽  
Author(s):  
K. Buchmann ◽  
C.V. Nielsen ◽  
J. Bresciani

AbstractSkin responses of fish to various parasites have been shown to involve various immunologically competent cells producing factors which guide the reactions of epithelial cells. However, the present study has demonstrated that a monoculture of epithelial cells has the ability to encapsulate and partially degrade ectoparasites without involvement of leukocytes. The ectoparasitic monogeneanGyrodactylus derjavini was kept on a monolayer of Epithelioma Papulosum Cyprini (EPC) cells in 24-well multidishes supplied with tissue culture medium. Gyrodactylus derjavini did not reproduce but survived an incubation period of up to139 h in the system. Due to sterile conditions, dead gyrodactylids were not subjected to microbial degradation and remained intact for several weeks. However, at 40 days G. derjavini was overgrown by EPC-cells and became partly degraded during the following 15 days. Analysis of enzyme reactivity in EPC-cells showed reactions for ten enzymes including esterases, amidases, phosphatases and phosphohydrolases. No marked differences for the ten enzymes between cell cultures with and without the ectoparasites were found but it cannot be excluded that some of these enzymes took part in parasite degradation. The study showed the in vitro capability of epithelial cells to interact, encapsulate and degrade G. derjavini without the involvement of leukocytes. This response probably is non-specific and will not exclude that various immunocompetent cells and their products normally optimize and accelerate elimination of invading parasites in vivo.


Sign in / Sign up

Export Citation Format

Share Document