adult human skin
Recently Published Documents


TOTAL DOCUMENTS

78
(FIVE YEARS 15)

H-INDEX

25
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Talita C. Oliveira ◽  
Maria F. Forni ◽  
Ancély F. Santos ◽  
Rosangela A. M. Wailemann ◽  
Leticia F. Terra ◽  
...  

Abstract Background. Pancreatic islets transplantation represents a promising therapeutic option for severe type 1 diabetes (T1D). Maintenance of long-term viability of transplanted islets still requires improvement. Stem cell use represents an option to repair and replace damaged islets or, alternatively, b cells in T1D. Mesenchymal stem cells (MSC) have been proposed as adjuvants for islet transplantation, facilitating grafting and improving their functionality. Aggregation of stem cells has gained interest in providing physiological interactions between cells and enhancing the in situ concentration of modulators of inflammation and immunity.Methods. We established a hanging-drop culture by the spontaneous aggregation of adult human skin fibroblast-like cells as spheroids. Adult skin spheroid-derived cells (SphCs) were characterized in vitro and in vivo. We assessed the potential benefit of SphCs as adjuvants to improve islet functionality by cotransplantation with a marginal mass of allogeneic islets in an experimental diabetic mouse model. We characterized the secretome of SphCs by mass spectrometry-based proteomics.Results. SphCs were characterized as multipotent progenitors by their surface expression of markers analyzed by flow cytometry and multilineage germ differentiation capacity. Coculture of SphCs with anti-CD3-stimulated mouse splenocytes diminished the proliferation of T-CD4+ lymphocytes and biased splenocyte cytokine secretion through an increase in the Th2/Th1 ratio. SphCs conditioned media attenuated apoptosis of islets induced by inflammatory cytokine challenge in vitro. Administration (i.t.) of SphCs showed the absence of tumorigenicity in immune-deficient mice.SphCs improved glycemic control when cotransplanted with a marginal mass of allogeneic islets in an experimental diabetic mouse model without pharmacological immunosuppression. SphCs’ protein secretome differed from its paired skin fibroblast-like counterpart in containing 70% of up- and downregulated proteins and biological processes that overall positively influence islets such as cytoprotection, cellular stress, metabolism, and survival.Conclusions. Hanging-drop cell culture methodology might contribute to the development of an efficient way to improve transplantation outcome by reducing undesirable consequences of pharmacological immunosuppression as well as the number of allogeneic islets required to achieve normoglycemia in T1D transplanted patients. Further studies might determine whether the identified proteins sustain immunomodulation and/or cytoprotective effects in transplanted allogeneic islets.


Morphologia ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 108-114
Author(s):  
I. V. Tverdokhlib ◽  
Yu. V. Silkina

Dermal fibroblasts are a dynamic and diverse population of cells whose functions in skin in many respects remain unknown. Normal adult human skin contains at least three distinct subpopulations of fibroblasts, which occupy unique niches in the dermis. Fibroblasts from each of these niches exhibit distinctive differences when cultured separately. Specific differences in fibroblast histophysiology are evident in papillary dermal fibroblasts, which reside in the superficial dermis, and reticular fibroblasts, which reside in the deep dermis. Both of these subpopulations of fibroblasts differ from the fibroblasts that are associated with hair follicles. Fibroblasts engage in fibroblast-epidermal interactions during hair development and in interfollicular regions of skin. They also play an important role in cutaneous structural transformations.


F1000Research ◽  
2021 ◽  
Vol 10 ◽  
pp. 767
Author(s):  
Alex M. Ascensión ◽  
Marcos J. Araúzo-Bravo ◽  
Ander Izeta

Background: The advent of single-cell RNA sequencing (scRNAseq) and additional single-cell omics technologies have provided scientists with unprecedented tools to explore biology at cellular resolution. However, reaching an appropriate number of good quality reads per cell and reasonable numbers of cells within each of the populations of interest are key to infer conclusions from otherwise limited analyses. For these reasons, scRNAseq studies are constantly increasing the number of cells analysed and the granularity of the resultant transcriptomics analyses. Methods: We aimed to identify previously described fibroblast subpopulations in healthy adult human skin by using the largest dataset published to date (528,253 sequenced cells) and an unsupervised population-matching algorithm. Results: Our reanalysis of this landmark resource demonstrates that a substantial proportion of cell transcriptomic signatures may be biased by cellular stress and response to hypoxic conditions. Conclusions: We postulate that the ”more is better” approach, currently prevalent in the scientific community, might undermine the extent of the analysis, possibly due to long computational processing times inherent to large datasets.


2021 ◽  
Vol 141 (5) ◽  
pp. S17
Author(s):  
A. Ji ◽  
K. Thrane ◽  
M. Guo ◽  
A. Rubin ◽  
D. Kim ◽  
...  

2020 ◽  
Vol 15 (1) ◽  
Author(s):  
Shuaipeng Ma ◽  
Tong Zang ◽  
Meng-Lu Liu ◽  
Chun-Li Zhang

Abstract Background Alzheimer’s disease (AD) is an adult-onset mental disorder with aging as a major risk factor. Early and progressive degeneration of basal forebrain cholinergic neurons (BFCNs) contributes substantially to cognitive impairments of AD. An aging-relevant cell model of BFCNs will critically help understand AD and identify potential therapeutics. Recent studies demonstrate that induced neurons directly reprogrammed from adult human skin fibroblasts retain aging-associated features. However, human induced BFCNs (hiBFCNs) have yet to be achieved. Methods We examined a reprogramming procedure for the generation of aging-relevant hiBFCNs through virus-mediated expression of fate-determining transcription factors. Skin fibroblasts were obtained from healthy young persons, healthy adults and sporadic AD patients. Properties of the induced neurons were examined by immunocytochemistry, qRT-PCR, western blotting, and electrophysiology. Results We established a protocol for efficient generation of hiBFCNs from adult human skin fibroblasts. They show electrophysiological properties of mature neurons and express BFCN-specific markers, such as CHAT, p75NTR, ISL1, and VACHT. As a proof-of-concept, our preliminary results further reveal that hiBFCNs from sporadic AD patients exhibit time-dependent TAU hyperphosphorylation in the soma and dysfunctional nucleocytoplasmic transport activities. Conclusions Aging-relevant BFCNs can be directly reprogrammed from human skin fibroblasts of healthy adults and sporadic AD patients. They show promises as an aging-relevant cell model for understanding AD pathology and may be employed for therapeutics identification for AD.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Elizabeth Pavez Lorie ◽  
Nicola Stricker ◽  
Beata Plitta-Michalak ◽  
I.-Peng Chen ◽  
Beate Volkmer ◽  
...  

Abstract We here present the spontaneously immortalised cell line, HaSKpw, as a novel model for the multistep process of skin carcinogenesis. HaSKpw cells were established from the epidermis of normal human adult skin that, without crisis, are now growing unrestricted and feeder-independent. At passage 22, clonal populations were established and clone7 (HaSKpwC7) was further compared to the also spontaneously immortalized HaCaT cells. As important differences, the HaSKpw cells express wild-type p53, remain pseudodiploid, and show a unique chromosomal profile with numerous complex aberrations involving chromosome 20. In addition, HaSKpw cells overexpress a pattern of genes and miRNAs such as KRT34, LOX, S100A9, miR21, and miR155; all pointing to a tumorigenic status. In concordance, HaSKpw cells exhibit reduced desmosomal contacts that provide them with increased motility and a highly migratory/invasive phenotype as demonstrated in scratch- and Boyden chamber assays. In 3D organotypic cultures, both HaCaT and HaSKpw cells form disorganized epithelia but only the HaSKpw cells show tumorcell-like invasive growth. Together, HaSKpwC7 and HaCaT cells represent two spontaneous (non-genetically engineered) “premalignant” keratinocyte lines from adult human skin that display different stages of the multistep process of skin carcinogenesis and thus represent unique models for analysing skin cancer development and progression.


2020 ◽  
Vol 94 (22) ◽  
Author(s):  
Megan G. Lloyd ◽  
Nicholas A. Smith ◽  
Michael Tighe ◽  
Kelsey L. Travis ◽  
Dongmei Liu ◽  
...  

ABSTRACT The herpesviruses varicella-zoster virus (VZV) and human cytomegalovirus (HCMV) are endemic to humans. VZV causes varicella (chicken pox) and herpes zoster (shingles), while HCMV causes serious disease in immunocompromised patients and neonates. More effective, less toxic antivirals are needed, necessitating better models to study these viruses and evaluate antivirals. Previously, VZV and HCMV models used fetal tissue; here, we developed an adult human skin model to study VZV and HCMV in culture and in vivo. While VZV is known to grow in skin, it was unknown whether skin could support an HCMV infection. We used TB40/E HCMV and POka VZV strains to evaluate virus tropism in skin organ culture (SOC) and skin xenograft mouse models. Adult human skin from reduction mammoplasties was prepared for culture on NetWells or mouse implantation. In SOC, VZV infected the epidermis and HCMV infected the dermis. Specifically, HCMV infected fibroblasts, endothelial cells, and hematopoietic cells, with some infected cells able to transfer infection. VZV and HCMV mouse models were developed by subcutaneous transplantation of skin into SCID/beige or athymic nude mice at 2 independent sites. Viruses were inoculated directly into one xenograft, and widespread infection was observed for VZV and HCMV. Notably, we detected VZV- and HCMV-infected cells in the contralateral, uninoculated xenografts, suggesting dissemination from infected xenografts occurred. For the first time, we showed HCMV successfully grows in adult human skin, as does VZV. Thus, this novel system may provide a much-needed preclinical small-animal model for HCMV and VZV and, potentially, other human-restricted viruses. IMPORTANCE Varicella-zoster virus and human cytomegalovirus infect a majority of the global population. While they often cause mild disease, serious illness and complications can arise. Unfortunately, there are few effective drugs to treat these viruses, and many are toxic. To complicate this, these viruses are restricted to replication in human cells and tissues, making them difficult to study in traditional animal models. Current models rely heavily on fetal tissues, can be prohibitively expensive, and are often complicated to generate. While fetal tissue models provide helpful insights, it is necessary to study human viruses in human tissue systems to fully understand these viruses and adequately evaluate novel antivirals. Adult human skin is an appropriate model for these viruses because many target cells are present, including basal keratinocytes, fibroblasts, dendritic cells, and lymphocytes. Skin models, in culture and xenografts in immunodeficient mice, have potential for research on viral pathogenesis, tissue tropism, dissemination, and therapy.


Cells ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 884
Author(s):  
Kerstin Kuffner ◽  
Julian Triebelhorn ◽  
Katrin Meindl ◽  
Christoph Benner ◽  
André Manook ◽  
...  

Mitochondrial malfunction is supposed to be involved in the etiology and pathology of major depressive disorder (MDD). Here, we aimed to identify and characterize the molecular pathomechanisms related to mitochondrial dysfunction in adult human skin fibroblasts, which were derived from MDD patients or non-depressive control subjects. We found that MDD fibroblasts showed significantly impaired mitochondrial functioning: basal and maximal respiration, spare respiratory capacity, non-mitochondrial respiration and adenosine triphosphate (ATP)-related oxygen consumption was lower. Moreover, MDD fibroblasts harbor lower ATP levels and showed hyperpolarized mitochondrial membrane potential. To investigate cellular resilience, we challenged both groups of fibroblasts with hormonal (dexamethasone) or metabolic (galactose) stress for one week, and found that both stressors increased oxygen consumption but lowered ATP content in MDD as well as in non-depressive control fibroblasts. Interestingly, the bioenergetic differences between fibroblasts from MDD or non-depressed subjects, which were observed under non-treated conditions, could not be detected after stress. Our findings support the hypothesis that altered mitochondrial function causes a bioenergetic imbalance, which is associated with the molecular pathophysiology of MDD. The observed alterations in the oxidative phosphorylation system (OXPHOS) and other mitochondria-related properties represent a basis for further investigations of pathophysiological mechanisms and might open new ways to gain insight into antidepressant signaling pathways.


Sign in / Sign up

Export Citation Format

Share Document