Soybean Aphid Development on, and BCMV Transmission to, Otebo Dry Bean

2008 ◽  
Vol 7 (1) ◽  
pp. 1-4 ◽  
Author(s):  
Christina DiFonzo ◽  
Kaci Agle
Author(s):  
Matthew E. O'Neal ◽  
Erin W. Hodgson ◽  
Kevin Johnson ◽  
Gregory R. VanNostrand ◽  
Nicholas P. Schmidt ◽  
...  

Crop Science ◽  
1978 ◽  
Vol 18 (1) ◽  
pp. 155-157 ◽  
Author(s):  
M. W. Adams ◽  
J. V. Wiersma ◽  
Julio Salazar
Keyword(s):  

2020 ◽  
Vol 100 (1) ◽  
pp. 40-55 ◽  
Author(s):  
Robert L. Conner ◽  
Greg J. Boland ◽  
Chris L. Gillard ◽  
Yongyan Chen ◽  
Xuechan Shan ◽  
...  

Anthracnose, caused by the fungus Colletotrichum lindemuthianum (Sacc. & Magnus) Briosi & Cavara, is one of the most destructive diseases of dry bean (Phaseolus vulgaris L.) in the world. Between 2005 and 2015, commercial fields of dry beans in Manitoba and Ontario were surveyed to determine the frequency of occurrence of races of the anthracnose fungus. Throughout the study, race 73 was most prevalent in Manitoba and Ontario. However, three anthracnose races not previously reported in Canada also were identified. These three new races and four previously identified anthracnose races were used to screen 52 dry bean cultivars, as well as a mung bean and azuki bean cultivar from Ontario, for their seedling reactions to determine their patterns of race resistance. The dry bean cultivars were classified into a total of 19 resistance spectra based on the pattern of seedling reactions to the seven anthracnose races. The most common resistance spectrum was susceptible to the majority of the anthracnose races and no cultivar was resistant to all of the races. Many bean cultivars produced intermediate anthracnose ratings to races 31 and 105 and tests of 16 dry bean cultivars against those races indicated that all cultivars with intermediate ratings to a specific race were segregating in their seedling reactions and none of the cultivars produced plants with only intermediate anthracnose severity ratings. This study provides new information on the anthracnose reactions of common bean cultivars in Canada, which should be useful for the development of new bean cultivars with durable resistance.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Natalie Hoidal ◽  
Robert L Koch

Abstract Economic thresholds (ETs) are a foundational principle of integrated pest management but are not always widely accepted by farmers and agricultural professionals. This article reports on a survey of Minnesota farmer and agricultural professional perceptions of the ET for soybean aphid, Aphis glycines Matsumura (Hempitera: Aphididae). We discuss insights for Extension programs on how to frame the importance of thresholds and teach stakeholders to use them effectively. Key takeaways include farmers and agricultural professionals often worry about combined effects of insect, disease, and physiological pressures, whereas effects of interactions with these other stressors are seldom discussed in educational outreach. Across groups, there is a fundamental misunderstanding about the difference between ETs and economic injury level. Many survey participants reported believing in the ET but lacked the time and capacity to fully implement it. Sales agronomists and farmers were the least likely groups to trust the university-determined soybean aphid ET, whereas commercial pesticide applicators and independent consultants were the most likely groups to trust it. Based on these results, we recommend adapting communication about ETs based on the target audience to address common misconceptions and barriers to ET use that are unique to each group.


Author(s):  
S J Bhusal ◽  
R L Koch ◽  
A J Lorenz

Abstract Soybean aphid (Aphis glycines Matsumura (Hemiptera: Aphididae)) has been a major pest of soybean in North America since its detection in this continent in 2000 and subsequent spread. Although several aphid resistance genes have been identified, at least four soybean aphid biotypes have been discovered, with three of them being virulent on soybean cultivars with certain soybean aphid resistance genes. These biotypes are known to vary across years and locations, but information on their variation within single fields is limited. An investigation was conducted to study the variation of soybean aphid biotypes within single townships and fields in Minnesota. Screening of 28 soybean aphid isolates collected from seven soybean fields (six soybean fields in Cairo and Wellington Townships of Renville County, MN and one field in Wilmar Township of Kandiyohi County, MN) revealed the existence of multiple known biotypes of soybean aphid within single fields of soybean. We found up to three biotypes of soybean aphid in a single field. Two biotypes were found in five fields while only one field had only a single biotype. Three isolates presented reactions on a panel of resistant and susceptible indicator lines that were different from known biotypes. These results highlight the importance of characterizing soybean aphid biotypes in small geographical areas and utilizing generated knowledge to develop soybean cultivars pyramided with multiple resistance genes. The outcome will be decreased use of insecticides, thereby improving economic and environmental sustainability of soybean production.


Sign in / Sign up

Export Citation Format

Share Document