Mutational Analysis of the Coat Protein Geneof Brome Mosaic Virus: Effects on Replication andMovement in Barley and inChenopodium hybridum

1995 ◽  
Vol 8 (1) ◽  
pp. 23 ◽  
Author(s):  
Stanislaw Flasinski
2005 ◽  
Vol 86 (4) ◽  
pp. 1201-1211 ◽  
Author(s):  
Atsushi Takeda ◽  
Wakako Nakamura ◽  
Nobumitsu Sasaki ◽  
Kaku Goto ◽  
Masanori Kaido ◽  
...  

Brome mosaic virus (BMV) requires encapsidation-competent coat protein (CP) for cell-to-cell movement and the 3a movement protein (MP) is involved in determining the CP requirement for BMV movement. However, these conclusions have been drawn by using BMV strain M1 (BMV-M1) and a related strain. Here, the ability of the MPs of five other natural BMV strains to mediate the movement of BMV-M1 in the absence of CP was tested. The MP of BMV M2 strain (BMV-M2) efficiently mediated the movement of CP-deficient BMV-M1 and the MPs of two other strains functioned similarly to some extent. Furthermore, BMV-M2 itself moved between cells independently of CP, demonstrating that BMV-M1 and -M2 use different movement modes. Reassortment between CP-deficient BMV-M1 and -M2 showed the involvement of RNA3 in determining the CP requirement for cell-to-cell movement and the involvement of RNAs 1 and 2 in movement efficiency and symptom induction in the absence of CP. Spontaneous BMV MP mutants generated in planta that exhibited CP-independent movement were also isolated and analysed. Comparison of the nucleotide differences of the MP genes of BMV-M1, the natural strains and mutants capable of CP-independent movement, together with further mutational analysis of BMV-M1 MP, revealed that single amino acid differences at the C terminus of MP are sufficient to alter the requirement for CP in the movement of BMV-M1. Based on these findings, a possible virus strategy in which a movement mode is selected in plant viruses to optimize viral infectivity in plants is discussed.


2003 ◽  
Vol 16 (4) ◽  
pp. 352-359 ◽  
Author(s):  
Yasushi Okinaka ◽  
Kazuyuki Mise ◽  
Tetsuro Okuno ◽  
Iwao Furusawa

Brome mosaic virus (BMV) requires the coat protein (CP) not only for encapsidation but also for viral cell-to-cell and long-distance movement in barley plants. This suggests that BMV infection is controlled by interactions of CP with putative host factors as well as with viral components. To identify the host factors that interact with BMV CP, we screened a barley cDNA library containing 2.4 × 106 independent clones, using a yeast two-hybrid system. Using full-length and truncated BMV CPs as baits, four candidate cDNA clones were isolated. One of the candidate cDNAs encodes a unique oxidoreductase enzyme, designated HCP1. HCP1 was found predominantly in the soluble fractions after differential centrifugation of BMV-infected and mock-inoculated barley tissues. A two-hybrid binding assay using a series of truncated BMV CPs demonstrated that a C-terminal portion of CP is essential for its interaction with HCP1. Interestingly, experiments with CP mutants bearing single amino acid substitutions at the C-terminus revealed that the capacity for mutant CP-HCP1 binding correlates well with the infectivity of the corresponding mutant viruses in barley. These results indicate that CP-HCP1 binding controls BMV infection of barley, interacting directly with CP, probably in the cell cytoplasm.


Virology ◽  
1987 ◽  
Vol 158 (1) ◽  
pp. 15-19 ◽  
Author(s):  
Mamoru Horikoshi ◽  
Masaharu Nakayama ◽  
Naoto Yamaoka ◽  
Iwao Furusawa ◽  
Jiko Shishiyama

Virology ◽  
1994 ◽  
Vol 198 (2) ◽  
pp. 427-436 ◽  
Author(s):  
Ekaterina Smirnyagina ◽  
Yau-Heiu Hsu ◽  
Noel Chua ◽  
Paul Ahlquist

2001 ◽  
Vol 75 (17) ◽  
pp. 8045-8053 ◽  
Author(s):  
Hideaki Nagano ◽  
Kazuyuki Mise ◽  
Iwao Furusawa ◽  
Tetsuro Okuno

ABSTRACT Plant viruses have movement protein (MP) gene(s) essential for cell-to-cell movement in hosts. Cucumber mosaic virus (CMV) requires its own coat protein (CP) in addition to the MP for intercellular movement. Our present results using variants of both CMV and a chimeric Brome mosaic virus with the CMV MP gene revealed that CMV MP truncated in its C-terminal 33 amino acids has the ability to mediate viral movement independently of CP. Coexpression of the intact and truncated CMV MPs extremely reduced movement of the chimeric viruses, suggesting that these heterogeneous CMV MPs function antagonistically. Sequential deletion analyses of the CMV MP revealed that the dispensability of CP occurred when the C-terminal deletion ranged between 31 and 36 amino acids and that shorter deletion impaired the ability of the MP to promote viral movement. This is the first report that a region of MP determines the requirement of CP in cell-to-cell movement of a plant virus.


1992 ◽  
Vol 58 (5) ◽  
pp. 773-779
Author(s):  
Daijiro HOSOKAWA ◽  
Kappei KOBAYASHI ◽  
Mamoru HORIKOSHI ◽  
Iwao FURUSAWA

2000 ◽  
Vol 74 (22) ◽  
pp. 10323-10331 ◽  
Author(s):  
K. Sivakumaran ◽  
Y. Bao ◽  
M. J. Roossinck ◽  
C. C. Kao

ABSTRACT Replication of viral RNA genomes requires the specific interaction between the replicase and the RNA template. Members of theBromovirus and Cucumovirus genera have a tRNA-like structure at the 3′ end of their genomic RNAs that interacts with the replicase and is required for minus-strand synthesis. InBrome mosaic virus (BMV), a stem-loop structure named C (SLC) is present within the tRNA-like region and is required for replicase binding and initiation of RNA synthesis in vitro. We have prepared an enriched replicase fraction from tobacco plants infected with the Fny isolate of Cucumber mosaic virus (Fny-CMV) that will direct synthesis from exogenously added templates. Using this replicase, we demonstrate that the SLC-like structure in Fny-CMV plays a role similar to that of BMV SLC in interacting with the CMV replicase. While the majority of CMV isolates have SLC-like elements similar to that of Fny-CMV, a second group displays sequence or structural features that are distinct but nonetheless recognized by Fny-CMV replicase for RNA synthesis. Both motifs have a 5′CA3′ dinucleotide that is invariant in the CMV isolates examined, and mutational analysis indicates that these are critical for interaction with the replicase. In the context of the entire tRNA-like element, both CMV SLC-like motifs are recognized by the BMV replicase. However, neither motif can direct synthesis by the BMV replicase in the absence of other tRNA-like elements, indicating that other features of the CMV tRNA can induce promoter recognition by a heterologous replicase.


2004 ◽  
Vol 78 (8) ◽  
pp. 4003-4010 ◽  
Author(s):  
Sharief Barends ◽  
Joëlle Rudinger-Thirion ◽  
Catherine Florentz ◽  
Richard Giegé ◽  
Cornelis W. A. Pleij ◽  
...  

ABSTRACT For various groups of plant viruses, the genomic RNAs end with a tRNA-like structure (TLS) instead of the 3′ poly(A) tail of common mRNAs. The actual function of these TLSs has long been enigmatic. Recently, however, it became clear that for turnip yellow mosaic virus, a tymovirus, the valylated TLSTYMV of the single genomic RNA functions as a bait for host ribosomes and directs them to the internal initiation site of translation (with N-terminal valine) of the second open reading frame for the polyprotein. This discovery prompted us to investigate whether the much larger TLSs of a different genus of viruses have a comparable function in translation. Brome mosaic virus (BMV), a bromovirus, has a tripartite RNA genome with a subgenomic RNA4 for coat protein expression. All four RNAs carry a highly conserved and bulky 3′ TLSBMV (about 200 nucleotides) with determinants for tyrosylation. We discovered TLSBMV-catalyzed self-tyrosylation of the tyrosyl-tRNA synthetase but could not clearly detect tyrosine incorporation into any virus-encoded protein. We established that BMV proteins do not need TLSBMV tyrosylation for their initiation. However, disruption of the TLSs strongly reduced the translation of genomic RNA1, RNA2, and less strongly, RNA3, whereas coat protein expression from RNA4 remained unaffected. This aberrant translation could be partially restored by providing the TLSBMV in trans. Intriguingly, a subdomain of the TLSBMV could even almost fully restore translation to the original pattern. We discuss here a model with a central and dominant role for the TLSBMV during the BMV infection cycle.


Virology ◽  
1983 ◽  
Vol 129 (2) ◽  
pp. 517-520 ◽  
Author(s):  
J.P. Moosic ◽  
D.J. McKean ◽  
D.S. Shih ◽  
P. Kaesberg

Sign in / Sign up

Export Citation Format

Share Document