scholarly journals Identical Accumulation and Immobilization of Sulfated and Nonsulfated Nod Factors in Host and Nonhost Root Hair Cell Walls

2003 ◽  
Vol 16 (10) ◽  
pp. 884-892 ◽  
Author(s):  
Joachim Goedhart ◽  
Jean-Jacques Bono ◽  
Ton Bisseling ◽  
Theodorus W. J. Gadella

Nod factors are signaling molecules secreted by Rhizobium bacteria. These lipo-chitooligosaccharides (LCOs) are required for symbiosis with legumes and can elicit specific responses at subnanomolar concentrations on a compatible host. How plants perceive LCOs is unclear. In this study, using fluorescent Nod factor analogs, we investigated whether sulfated and nonsulfated Nod factors were bound and perceived differently by Medicago truncatula and Vicia sativa root hairs. The bioactivity of three novel sulfated fluorescent LCOs was tested in a root hair deformation assay on M. truncatula, showing bioactivity down to 0.1 to 1 nM. Fluorescence microscopy of plasmolyzed M. truncatula root hairs shows that sulfated fluorescent Nod factors accumulate in the cell wall of root hairs, whereas they are absent from the plasma membrane when applied at 10 nM. When the fluorescent Nod factor distribution in medium surrounding a root was studied, a sharp decrease in fluorescence close to the root hairs was observed, visualizing the remarkable capacity of root hairs to absorb Nod factors from the medium. Fluorescence correlation microscopy was used to study in detail the mobilities of sulfated and nonsulfated fluorescent Nod factors which are biologically active on M. truncatula and V. sativa, respectively. Remarkably, no difference between sulfated and nonsulfated Nod factors was observed: both hardly diffuse and strongly accumulate in root hair cell walls of both M. truncatula and V. sativa. The implications for the mode of Nod factor perception are discussed.

1983 ◽  
Vol 61 (11) ◽  
pp. 2863-2876 ◽  
Author(s):  
Alison M. Berry ◽  
John G. Torrey

Structural and cell developmental studies of root hair deformation in Alnus rubra Bong. (Betulaceae) were carried out following inoculation with the soil pseudomonad Pseudomonas cepacia 85, alone or in concert with Frankia, and using axenically grown seedlings. Deformational changes can be observed in elongating root hairs within 2 h of inoculation with P. cepacia 85. These growing root hairs become branched or multilobed and highly modified from the single-tip growth of axenic root hairs. The cell walls of deformed hairs are histologically distinctive when stained with the fluorochrome acridine orange. Filtrate studies using P. cepacia 85 suggest that the deforming substance is not a low molecular weight compound. Root hair deformation and the associated wall histology are host specific in that Betula root hairs show none of these responses when grown and inoculated in the experimental conditions described. The bacterially induced changes in root hair cell walls during deformation may create a chemically and physically modified substrate for Frankia penetration, and the deformation itself may serve to entrap and enclose the filamentous organism, allowing wall dissolution and entry. Thus these events represent a complex host response as a precondition to successful nodulation.


2000 ◽  
Vol 21 (1) ◽  
pp. 109-119 ◽  
Author(s):  
Joachim Goedhart ◽  
Mark A. Hink ◽  
Antonie J. W. G. Visser ◽  
Ton Bisseling ◽  
Theodorus W. J. Gadella

Planta ◽  
2015 ◽  
Vol 242 (5) ◽  
pp. 1123-1138 ◽  
Author(s):  
Artur Muszyński ◽  
Malcolm A. O’Neill ◽  
Easwaran Ramasamy ◽  
Sivakumar Pattathil ◽  
Utku Avci ◽  
...  

2015 ◽  
Vol 27 (3) ◽  
pp. 806-822 ◽  
Author(s):  
Ming-Juan Lei ◽  
Qi Wang ◽  
Xiaolin Li ◽  
Aimin Chen ◽  
Li Luo ◽  
...  

2006 ◽  
Vol 84 (4) ◽  
pp. 613-621 ◽  
Author(s):  
M.E. Galway

Rapid progress is being made in determining the composition, synthesis, and mechanical properties of plant cell walls. Although tip-growing root hairs provide an excellent example of high-speed cell wall assembly, they have been relatively neglected by researchers interested in cell walls and those interested in tip growth. This review aims to present the root hair as an experimental system for future cell wall studies by assembling recent discoveries about the walls onto the existing framework based on older information. Most recent data come from arabidopsis ( Arabidopsis thaliana (L.) Heynh) and model legumes. Evidence supporting the turgor-mediated expansion of hair cell walls is considered, along with a survey of three components needed for cell wall expansion without rupture: cellulose (the role of CesA cellulose synthases is also addressed), Csld3, a cellulose synthase-like protein, and Lrx1, a cell wall protein. Further clues about hair cell wall composition have been obtained from gene expression studies and the use of monoclonal antibodies. Finally, there is a review of the experimental evidence that (i) hairs near the hypocotyl differ developmentally and structurally from other hairs and (ii) biosynthesis of wall components in hairs may differ significantly from the epidermal cells that they grew from. All of these recent advances suggest that root hairs could provide valuable data to augment models of plant cell walls based on more conventional cell types.


Author(s):  
L. Goosen-de Roo ◽  
A. M. Mommaas-Kienhuis ◽  
J. W. Kijne

1997 ◽  
Vol 10 (7) ◽  
pp. 791-802 ◽  
Author(s):  
Christoph A. Gehring ◽  
Helen R. Irving ◽  
Akram A. Kabbara ◽  
Roger W. Parish ◽  
Nawal M. Boukli ◽  
...  

Rhizobia excrete variously substituted lipo-oligosaccha-ride Nod factors into the legume rhizosphere. Homologous legumes respond to these signals through deformation of the root hairs and the development of nodulation foci in the root cortex. Cellular events in root hairs from the susceptible zone of nearly mature root hairs were studied in root segments loaded with the calcium indicators Fura-2 or Fluo-3. Application of 10-9 M Nod factors of the broad-host-range Rhizobium sp. NGR234 to the homologous legume Vigna unguiculata resulted, within seconds, in plateau-like increases in intracellular free calcium ([Ca2+]i) in the root hairs and root epidermal cells. Nod factors of R. meliloti at 10-9 M caused equally rapid increases in [Ca2+]i in the root hairs and epidermal cells of the nonhost V. unguiculata, and also induced root-hair deformation. The chitin tetramer, N-N′-N″-N′″-tetracetylchitotetraose, which represents the backbone of Nod factors, induced neither root-hair deformation nor changes in [Ca2+]i in V. unguiculata. Root hairs and epidermal cells of the nonlegume non-host Arabidopsis thaliana showed neither [Ca2+]i increases nor root-hair deformation in response to both factors.


1988 ◽  
Vol 86 (2) ◽  
pp. 638-641 ◽  
Author(s):  
Andrew J. Mort ◽  
Paul B. Grover

1999 ◽  
Vol 77 (9) ◽  
pp. 1293-1301 ◽  
Author(s):  
Hélène Cérémonie ◽  
Frédéric Debellé ◽  
Maria P Fernandez

The infectious processes of the Frankia-Alnus and Rhizobium-legume symbioses present strong similarities, suggesting the existence of analogies between Frankia root hair deforming factor and rhizobia Nod factors. Biochemical and functional analogies were tested using ACoN24d Frankia strain. The putative chitin-like nature of the Frankia deforming factor was explored by (i) gas chromatography coupled to mass spectrometry and thin layer chromatography, after radioactive labeling of the culture for detection of chitin oligomers, and (ii) following the root hair deforming activity of the supernatant after discriminating treatments (temperature, chitinase, butanol extraction). In parallel, the functional analogy was questioned by testing the mitotic activity of the Frankia supernatant onAlnus glutinosa (L.) roots. The implication in the symbiotic process of the Frankia factor was indirectly explored by testing the effect of a nodulation inhibitor (combined nitrogen) on root hair deformation. The studies of the combined nitrogen effect on root hair deformation indicate that the deformation induced in vitro by the Frankia factor is linked to the symbiotic process. Moreover, the various approaches used suggest that rhizobia Nod factors and Frankia root hair deforming factor are two structurally divergent symbiotic factors. However, functionnal differences between Frankia root hair factor and the Nod factors have to be confirmed.Key words: Frankia, root hair deforming factor, Nod factor, actinorhizal plants.


Sign in / Sign up

Export Citation Format

Share Document