First Report of Aphanomyces cochlioides on Sugar Beet in Texas

Plant Disease ◽  
1988 ◽  
Vol 72 (1) ◽  
pp. 79 ◽  
Author(s):  
C. M. Rush
Plant Disease ◽  
2000 ◽  
Vol 84 (5) ◽  
pp. 596-596 ◽  
Author(s):  
R. M. Harveson

Sugar beet (Beta vulgaris L.) plants exhibiting dull green and chlorotic foliage were first observed in a field near Dalton, NE, in late July 1999. Root symptoms included distal tip rot with internal, yellow-brown, water-soaked tissues. Isolations on MBV medium (1) consistently yielded Aphanomyces cochlioides Drechs. Water cultures produced primary zoospores that encysted at the tips of sporangiophores, followed by release of secondary zoospores within 12 h. Seedlings inoculated with zoospores began to die 2 weeks after emergence in a greenhouse. Symptoms on hypocotyls began as water-soaked lesions that turned black and thread-like. The causal agent was reisolated from infected seedlings, completing Koch's postulates. The disease was subsequently found in more than 15 separate fields, representing 5 of 11 sugar beet-growing counties in Nebraska and 1 county in Wyoming. In October, plants from the same fields were observed with stunted, distorted roots and superficial, scabby lesions associated with latent A. cochlioides infection. The pathogen could not be isolated from this stage but was confirmed by observing mature oospores within thin, stained sections under a microscope. The sections were additionally mixed with sterile potting soil and planted in the greenhouse with sugar beets. Several weeks after emergence, seedlings began to die, and the pathogen was reisolated. This represents the first report of Aphanomyces root rot and its spread in the Central High Plains. It also confirms that the described latent symptoms on sugar beet are caused by A. cochlioides. Reference: (1). W. F. Pfender et al. Plant Dis. 68:845, 1984.


2019 ◽  
Vol 39 ◽  
pp. 22
Author(s):  
M. Avan ◽  
C. Aksoy ◽  
Z. Katırcıoğlu ◽  
F. Demirci ◽  
R. Kaya

Plant Disease ◽  
2017 ◽  
Vol 101 (1) ◽  
pp. 254-254
Author(s):  
J. H. Joa ◽  
K. C. Seong ◽  
I. Y. Choi ◽  
S. E. Cho ◽  
H. D. Shin

Author(s):  

Abstract A new distribution map is provided for Aphanomyces cochlioides Drechsler. Peronosporea: Saprolegniales: Leptolegniaceae. Hosts: spinach (Spinacia oleracea), sugar beet (Beta vulgaris), and other members of the Chenopodiaceae and Amaranthaceae. Information is given on the geographical distribution in Africa (Egypt), Asia (Japan, Hokkaido, Turkey), Europe (Austria, Belgium, Bulgaria, Croatia, Denmark, Estonia, France, Germany, Hungary, Ireland, Moldova, Netherlands, Poland, Russia, Spain, Sweden, Ukraine, UK), North America (Canada, Alberta, Nova Scotia, Ontario, Quebec, USA, Arizona, California, Connecticut, Idaho, Indiana, Iowa, Maine, Michigan, Minnesota, Montana, Nebraska, North Dakota, Ohio, South Dakota, Texas, Washington, Wisconsin, Wyoming), Oceania (Australia, Queensland), and South America (Chile).


Plant Disease ◽  
2002 ◽  
Vol 86 (5) ◽  
pp. 547-551 ◽  
Author(s):  
Julie W. Beale ◽  
Carol E. Windels ◽  
Linda L. Kinkel

Spatial distribution of Aphanomyces cochlioides inoculum and disease was assessed in sugar beet fields located near Moorhead, MN and Wahpeton, ND. Soil samples were collected in June and July 1994 from two main plots (60 by 60 m) in each field. Samples were evaluated for A. cochlioides using a sugar beet seedling assay in the greenhouse to determine a root rot index value (0-to-100 scale), which served as an indirect estimate of relative activity and density of inoculum. Field evaluations of Aphanomyces root rot on sugar beet (0-to-7 scale) were made at harvest in September at each soil collection site. Greenhouse root rot index values correlated positively with field disease ratings for all plots. Variance-to-mean ratios of greenhouse root rot index values and of field disease ratings among samples within each plot were calculated to compare the spatial distribution of midseason inoculum with root rot at harvest. Ratios of greenhouse root rot indices indicated that inoculum of A. cochlioides was aggregated in the field at midseason, but root rot was uniform within plots by harvest. Wet weather in July through August was conducive to infection and development of symptoms. A uniform distribution of disease at harvest likely reflects a combination of factors, including root growth into inoculum foci, redistribution of inoculum, and inoculum densities that are spatially variable but all above some minimum threshold for infection.


1966 ◽  
Vol 14 (2) ◽  
pp. 164-167 ◽  
Author(s):  
Gerald E. Coe ◽  
C. L. Schneider

Plant Disease ◽  
2018 ◽  
Vol 102 (12) ◽  
pp. 2634 ◽  
Author(s):  
A. N. Ignatov ◽  
J. S. Panycheva ◽  
N. Spechenkova ◽  
M. Taliansky

Plant Disease ◽  
2002 ◽  
Vol 86 (2) ◽  
pp. 187-187 ◽  
Author(s):  
Sh. Farzadfar ◽  
R. Pourrahim ◽  
A. R. Golnaraghi ◽  
N. Shahraeen

Sugar beet is a main field crop in Iran and is cultivated in 186,000 ha. During the summer of 2001, sugar beet (Beta vulgaris) plants with pale, often upright, narrow, and rolled leaves were collected from the six main beet cultivation provinces of Iran (Fars, Ghazvin, Kermanshah, Khorasan, Semnan, and Isfahan). Roots of symptomatic plants were small, often with constriction, and exhibited warty outgrowth, proliferation of fibrous roots, and vascular necrosis. Beet soil-borne virus (BSBV) and Beet necrotic yellow vein (BNYVV, genus Benyvirus) were detected in sugar beet root samples by tissue-blot immunoassay (TBIA) using BSBV- and BNYVV-specific monoclonal antibodies (As-0576.1 and As-0799.1/CG6-F4, respectively; DSMZ Plant Virus Collection, Germany). Root extracts of sugar beet plants infected with BSBV, were infective by mechanical inoculation to Chenopodium quinoa causing necrotic ring spots. BSBV was detected in inoculated plants by TBIA. Laboratory tests using TBIA on 2,387 randomly collected samples showed that BSBV was present in 406 plants (17%) and BNYVV was present in 1,347 plants (56.43%). BSBV resembles BNYVV, the causal agent of sugar beet rhizomania, morphologically and in its transmission by Polymyxa betae (1). BNYVV has been reported previously from Iran (2). To our knowledge, this is the first report of BSBV occurring on sugar beet in Iran. References: (1) M. Ivanovic and I. Macfarlane. Annu. Rep. Rothamsted Exp. Stn. Page 190, 1982. (2) K. Izadpanah et al. Iran. J. Plant Pathol. 32:155, 1996.


Plant Disease ◽  
2006 ◽  
Vol 90 (1) ◽  
pp. 110-110 ◽  
Author(s):  
C. Rubies Autonell ◽  
C. Ratti ◽  
R. Resca ◽  
M. De Biaggi ◽  
J. Ayala García

Beet virus Q (BVQ) is a member of the genus Pomovirus that is transmitted by Polymyxa betae Keskin. Initially described as the Wierthe serotype of Beet soilborne virus (BSBV), BVQ is now considered a distinct virus species based on its genomic properties (1). BVQ is commonly found in fields where BSBV and the causal agent of rhizomania disease, Beet necrotic yellow vein virus (BNYVV), are also present. Simultaneous infection of sugar beet plants with multiple virus species could affect disease symptom expression (4). For this reason, the pathogenicity of BVQ and its role in the epidemiology of rhizomania disease remain a subject of study. During 2004, six soil samples were collected from different sites in the Castilla-La Mancha Region in Spain (Albacete and Ciudad Real provinces) where rhizomania symptoms were observed in BNYVV-tolerant sugar beet cultivars. Soil from the Hainaut Region of Belgium, infected with BNYVV, BSBV, and BVQ and supplied by Prof. C. Bragard (Unité de Phytopathologie, Université Catholique de Louvain, Belgium) was used as a positive control. Sugar beet plants (cv. Asso) were grown in the soil samples for 45 days at 24°C and then root tissue was harvested. All samples were analyzed using enzyme-linked immunosorbent assay (ELISA) with commercial BNYVV antiserum (BIOREBA AG, Reinach, Switzerland) and BSBV/BVQ antisera (IC10 and 6G2) supplied by R. Koenig (Federal Biological Research Centre for Agriculture and Forestry, Braunschweig, Germany). Total RNA extracted from sugar beet roots as previously described (3) was tested using reverse transcription-polymerase chain reaction (RT-PCR). Primers BVQ3F (5′-GTT TTC AAA CTT GCC ATC CT-3′) and BVQ3R2 (5′-CCA CAA TGG GCC AAT AGA-3′), which amplify a 690-bp fragment of the triple gene block region of BVQ RNA 3, were designed based on the published sequence (GenBank Accession No. AJ223598). The presence of BSBV and BNYVV was assayed using RT-PCR with previously described primers (2,3). BVQ was detected from plants grown in soil collected from La Roda (Albacete) in Spain and from Hainaut in Belgium. The fragments amplified from Spanish sample with BVQ3F and BVQ3R2 (GenBank Accession No. AY849375) showed 95.9% nucleotide sequence identity with the previously published sequence of BVQ (1). The La Roda BVQ isolate was mechanically transmitted to Chenopodium quinoa from infected sugar beet root tissue. BVQ was detected using RT-PCR in local lesions that appeared approximately 5 days after inoculation and subsequently spread along veins. To our knowledge, this is the first report of BVQ in soil from Spain, although it has been previously reported in Belgium, Bulgaria, France, Germany, Hungary, and the Netherlands (2). BSBV and BNYVV (type A) were detected in all six Spanish samples, as well as in the Belgian soil. References: (1) R. Koenig et al. J. Gen. Virol. 79:2027, 1998. (2) A. Meunier et al. Appl. Environ Microbiol. 69:2356, 2003. (3) C. Ratti et al. J. Virol. Methods 124:41, 2005. (4) C. Rush Annu. Rev Phytopathol 41:567, 2003.


Plant Disease ◽  
2017 ◽  
Vol 101 (7) ◽  
pp. 1318 ◽  
Author(s):  
Y. Zhou ◽  
Z. Q. Zhao ◽  
Q. Y. Guo ◽  
B. Lei
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document