First Report of Anthracnose Caused by Glomerella cingulata on White Beans in Ontario, Canada

Plant Disease ◽  
1990 ◽  
Vol 74 (5) ◽  
pp. 394 ◽  
Author(s):  
J. C. Tu
Plant Disease ◽  
2014 ◽  
Vol 98 (11) ◽  
pp. 1583-1583 ◽  
Author(s):  
S. Sun ◽  
J. Wang ◽  
H. Zhao ◽  
M. Zhang ◽  
C. Shu ◽  
...  

Camellia azalea Wei (Theaceae) is a critically endangered species with high ornamental value in China. Its wild individual plants, less than 1,000, are only found in Yangchun, Guangdong Province, China. Since 2010, a severe dieback on C. azalea has been observed in several commercial plantations in Foshan, Guangdong Province, during the process of artificial propagation. The infection started from the middle portion of the new shoots, where necrosis spots developed and expanded to girdle the stems. Consequently, the shoots died and became brown in color. Later, the necrotic spots turned pale gray, and many small, black fruiting bodies emerged. In the end, more than half of the dead shoots broke off from the necrotic spots. Generally, about 10 to 20% new shoots were infected for one individual plant. Although the older branches with leaves were not infected and showed no symptoms, the dieback of crown outer layer greatly reduced the ornamental value of the plants and the sale price went down. Another part of the plants that is often infected is the stalk, resulting in the drop of fruits. By using routine isolation methods and single-spore purification technique, 18 single-conidial isolates with similar colony morphology were obtained from five diseased plants. The cultures of single-conidial isolates grew at an average rate of 6.8 mm per day on PDA at 28°C. The central part of colony became gray-green with age, and acervuli formed on the medium after incubation for 7 to 10 days. Conidia, round at both ends, were 13.65 to 18.3 × 3.61 to 5.92 μm (avg. = 16.1 ± 1.6 × 4.8 ± 0.8 μm, n = 50) in size. After culturing for 50 to 60 days, perithecia matured. Ascopores were hyaline, straight, aseptate, and 10.02 to 13.77 × 3.27 to 4.45 μm (avg. = 12.2 ± 1.1 × 3.9 ± 0.4 μm, n = 50) in size. The cultural and morphological characteristics of these isolates are consistent with the description of Glomerella cingulata f. sp. camelliae (1). The sequences (GenBank Accession Nos. KJ668576, KJ668577, KJ676642, KJ689374, KJ689375, and KJ689376) of ITS, GPDH, GS, actin, β-tubulin, and CAL regions of three representative isolates are identical and share 99, 99, 100, 99, 100, and 100% identity with those of the type specimen of G. cingulata f. sp. camelliae ICMP 10643 (JX010224, JX009908, JX010119, JX009540, JX010436, and JX009630), respectively (2). Twenty randomly selected shoots with young leaves on the top of them, detached from different trees, were scratched in the middle part with a fine scalpel to generate a 5-mm-long wound, 50 μl conidial suspension (1 × 105 conidia ml−1) was then dropped onto the wound for inoculation. The control shoots were inoculated with the same volume of sterile distilled water. All inoculated shoots were placed into an intelligent artificial climate incubator with 12-h photoperiod and 100% relative humidity at 28 ± 1°C. Each treatment replicated on five shoots, and the tests were repeated twice. Symptoms resembling those in the field were observed on all conidia-inoculated shoots after 10 to 14 days, and control shoots were asymptomatic. The same fungus G. cingulata f. sp. camelliae was consistently re-isolated from the diseased shoots, fulfilling Koch's postulates. G. cingulata f. sp. camelliae has been reported on other species of Camellia outside China, but this is the first report in China where the species is endemic and endangered (1,2). References: (1) J. S. W. Dickens et al. Plant Pathol. 38:75, 1989. (2) B. Weir et al. Stud Mycol. 73:115, 2012.


Plant Disease ◽  
2000 ◽  
Vol 84 (6) ◽  
pp. 706-706 ◽  
Author(s):  
S. Wolcan ◽  
S. Larran

Passion fruit (Passiflora edulis Sims.) is a subtropical fruit recently cultivated in Misiones Province, Argentina. In spring 1997, a severe epidemic of anthracnose was observed. Disease incidence was ≍95%, causing high yield losses. Sunken, gray lesions on the whole surface of young fruits were observed. Under humid conditions, acervuli containing masses of spores and dark setae were found within lesions. On leaves, tendrils, and twigs, circular and irregular brown spots with darker edges were observed. Abortion of flowers also was recorded. Cultures on potato dextrose agar yielded abundant, gray aerial mycelium and one-celled, hyaline, oblong conidia with obtuse or rounded ends (11.2 to 15.0 × 3.8 to 4.6 μm). Perithecia were scarce (90.2 to 220.0 μm). Asci were not conspicuous, and ascospores measured 10.8 to 23.4 × 3.5 to 7.0 μm. Based on morphological characteristics, the fungus was identified as Glomerella cingulata (anamorph Colletotrichum gloeosporioides) (2). Fruits and leaves of P. edulis with and without wounds were sprayed with a conidial suspension (106/ml) and incubated in plastic bags for 48 h. Lesions similar to original symptoms were observed after 2 weeks only on wounded leaves and fruits. G. cingulata was reisolated, confirming Koch's postulates. This disease has been recorded in Brazil and Japan (1). This is the first report of G. cingulata on passion fruit in Argentina. Reference: (1) E. Francisco Neto et al. Summa Phytopathol. 21:25, 1995. (2) J. A. von Arx. Phytopathol. Z. 29:413, 1957.


Plant Disease ◽  
2019 ◽  
Vol 103 (4) ◽  
pp. 766
Author(s):  
H. N. Liu ◽  
J. A. Liu ◽  
G. Y. Zhou ◽  
W. L. Hu

Plant Disease ◽  
2008 ◽  
Vol 92 (9) ◽  
pp. 1369-1369 ◽  
Author(s):  
K. B. Ireland ◽  
N. A. Haji Mohamad Noor ◽  
E. A. B. Aitken ◽  
S. Schmidt ◽  
J. C. Volin

The Old World climbing fern, Lygodium microphyllum (Cav.) R. Br., and Japanese climbing fern, L. japonicum (Thunb.) Sw., are invasive noxious weeds in Florida (1). Exploratory surveys for classical biological control agents of L. microphyllum in the fern's native range of Australia and Asia have focused on aboveground herbivores (1). From February to August 2006, fungi were isolated from symptomatic foliage, including lesions associated with leaf curls caused by the mite Flocarus perrepae Knihinicki & Boczek., obtained from L. microphyllum at sites across southeast Queensland, Australia and from both fern species grown at the CSIRO Long Pocket Laboratories in Brisbane, Australia. Anthracnose symptoms with chlorotic margins, initiating at the tip or base of the individual pinnules, were observed on fronds. Dieback symptoms affected growing tips, with sunken lesions and a gradual necrotic wilt as far as the next growth junction of pinnae. Sections from diseased margins were surface sterilized, placed onto water agar, and incubated at 23°C with a 16-h photoperiod. Variable colonies of white-to-gray mycelia, felted or tufted with complete margins, grew well on oatmeal agar and potato dextrose agar. Conidia were hyaline to light salmon, aseptate, straight, and cylindrical (10.4 to 18.2 × 2.6 to 5.2 μm), borne in salmon-to-bright orange masses at 25°C, and consistent with previous descriptions of Colletotrichum gloeosporioides (Penz.) Penz. & Sacc. (3), anamorph of Glomerella cingulata (2). Asci that formed after 3 to 4 weeks in culture were eight-spored, clavate to cylindrical (46.8 to 62.4 × 9.1 to 11.7 μm), and thickened at the apex, and ascospores were cylindrical (11.7 to 18.2 × 3.9 to 5.2 μm), slightly curved, unicellular and hyaline, which is consistent with descriptions of G. cingulata (2). No fruiting bodies were observed in planta; acervuli, setae, and perethecia were not observed. Identification was further confirmed by molecular analysis using the primer pair ITS1/ITS4 (4) (GenBank Accession No. EU697014), indicating 100% similarity to isolates of G. cingulata. To confirm pathogenicity, Koch's postulates were performed on three plants of L. japonicum and 12 plants of L. microphyllum, with an equal number of controls. Conidial suspensions were made to 1.7 × 106 conidia ml–1. During the experiments in the glasshouse, temperatures ranged from 12.6 to 40°C and relative humidity from 39 to 85%. Tips and fronds were collected after 2 to 8 weeks and isolation and identification performed. G. cingulata was consistently reisolated from diseased tissue. No symptoms appeared on controls and isolations did not yield the pathogen. To our knowledge, this is the first report of G. cingulata infecting L. microphyllum and L. japonicum in Australia. Its potential as a biological control agent in the ferns' introduced range remains to be tested. References: (1) J. A. Goolsby et al. Biol. Control. 28:33, 2003. (2) J. E. M. Mordue. Glomerella cingulata. No. 315 in: CMI Descriptions of Pathogenic Fungi and Bacteria. CAB, Kew, UK, 1971. (3) B. C. Sutton. The Genus Glomerella and its Anamorph Colletotrichum. In: Colletotrichum: Biology, Pathology and Control. J. A. Bailey and M. J. Jeger, eds. CAB International, Wallingford, UK, 1992. (4) T. M. White et al. Amplification and Direct Sequencing of Fungal Ribosomal RNA for Phylogenetics. Page 315 in: PCR Protocols: A Guide to Methods and Applications. M. A. Innis et al., eds. Academic Press, San Diego, 1990.


2013 ◽  
Vol 79 (1) ◽  
pp. 10-14
Author(s):  
T. TAKUSHI ◽  
T. SATO ◽  
A. KAMEKAWA ◽  
S. TABA ◽  
Z. MOROMIZATO

2005 ◽  
Vol 29 (5) ◽  
pp. 829-831
Author(s):  
Bruno Sérgio Vieira ◽  
Olinto Liparini Pereira ◽  
Márcio Luiz Batista ◽  
Robert Weingart Barreto

Glomerella cingulata was found causing severe leaf blight on Talauma ovata, a common tree species in the Atlantic tropical rain forest floodplains of Southern Brazil. The disease and pathogen are described and illustrated and patogenicity is also demonstrated. This is the first report of this disease.


Plant Disease ◽  
2015 ◽  
Vol 99 (4) ◽  
pp. 553
Author(s):  
X. L. Du ◽  
T. L. Hu ◽  
Y. J. Liu ◽  
Y. N. Wang ◽  
S. T. Wang ◽  
...  

2013 ◽  
Vol 25 (2) ◽  
pp. 125-128
Author(s):  
Mateus Endriger Caliman ◽  
Cíntia Sthefany Lima de Oliveira ◽  
Jadergudson Pereira ◽  
José Luiz Bezerra

Plant Disease ◽  
2002 ◽  
Vol 86 (4) ◽  
pp. 440-440
Author(s):  
M. Carranza ◽  
S. Larran ◽  
B. Ronco

In Argentina, common guava (Psidium guajava L.) is frequently planted in gardens, but commercial production is limited. In February 2001, anthracnose symptoms were detected on fruits of common guava in La Plata, Buenos Aires Province. Symptoms of grayish, circular, sunken spots approximately 5 cm long were observed only on the surface of green unripe fruits. In humid conditions, acervuli containing salmon-pink masses of spores and dark setae were found within lesions. Symptomatic tissue was surface-disinfested, placed on potato dextrose agar, and incubated at 20°C. Cultures were obtained with abundant, gray, aerial mycelium and one-celled, hyaline, oblong, or cylindrical conidia with rounded ends (9.7 to 14.5 × 3.2 to 5.2 μm). Scarce dark brown perithecia developed in 2-month-old cultures but were not observed on fruit tissues. Asci were not conspicuous and contained straight or slightly curved ascospores (11.5 to 25.3 × 4 to 7 μm). The pathogen was identified as Glomerella cingulata (Stoneman) Spauld. & Schrenk (anamorph Colletotrichum gloeosporioides (Penz.) Penz. & Sacc. in Penz), based on morphological characteristics (1,2). Ten healthy, immature, attached fruits of common guava were inoculated with 3 × 106 conidia per ml of each of six isolates of G. cingulata, and ten were left untreated. Individual fruits were enclosed in plastic bags and kept at 15 to 20°C. After 72 h, bags were removed, and after 20 days, anthracnose symptoms were observed only on inoculated fruits. G. cingulata was reisolated from fruit lesions, and Koch's postulates were fulfilled. To our knowledge, this is the first report of G. cingulata on common guava in Argentina. References: (1) B. C. Sutton. The Coelomycetes. CMI, Kew, England, 1980. (2) J. A. von Arx. Phytopathol. Z. 29:413, 1957.


Sign in / Sign up

Export Citation Format

Share Document