Evaluation of Rhizosphere Bacteria for Biological Control of Pythium Root Rot of Greenhouse Cucumbers in Hydroponic Culture

Plant Disease ◽  
1994 ◽  
Vol 78 (5) ◽  
pp. 447 ◽  
Author(s):  
L. RANKIN
2007 ◽  
Vol 35 (2) ◽  
pp. 159-178 ◽  
Author(s):  
W. Liu ◽  
J. C. Sutton ◽  
B. Grodzinski ◽  
J. W. Kloepper ◽  
M. S. Reddy

Plant Disease ◽  
2021 ◽  
Author(s):  
Joseph Doherty ◽  
Joseph Roberts

Pythium root rot (PRR) is a disease that can rapidly devastate large swaths of golf course putting greens, with little recourse once symptoms appear. Golf courses routinely apply preventative fungicides for root diseases, which may be altering the rhizosphere microbiome leading to unintended impacts to plant health. A multi-year field trial was initiated on a ‘T-1’ creeping bentgrass (Agrostis stolonifera L. cv. ‘T-1’) putting green in College Park, Maryland to evaluate preventative PRR management for disease suppression and impacts to rhizosphere bacterial communities. Fungicides commonly used to prevent PRR and a biological fungicide were repeatedly applied to experimental plots throughout the growing season. Rhizosphere samples were collected twice annually from each plot to evaluate rhizosphere bacterial communities through amplicon sequencing and monitor biological control organism populations via qPCR. Cyazofamid was the only treatment to suppress PRR in both years compared to the control. Fosetyl-Al on a 14 d interval and Bacillus subtilis QST713 also reduced PRR severity in 2019 compared to the non-treated control. Treatments did not significantly alter bacterial communities, however seasonal environmental changes did. Repeated rhizosphere targeted applications of B. subtilis QST713 appear to have established the bacterium into the rhizosphere, as populations increased between samples, even after applications stopped. These findings suggest that QST713 may reduce pathogen pressure when repeatedly applied and can reduce fungicide usage during periods of low PRR pressure.


2009 ◽  
Vol 83 (24) ◽  
pp. 12801-12812 ◽  
Author(s):  
Sotaro Chiba ◽  
Lakha Salaipeth ◽  
Yu-Hsin Lin ◽  
Atsuko Sasaki ◽  
Satoko Kanematsu ◽  
...  

ABSTRACT White root rot, caused by the ascomycete Rosellinia necatrix, is a devastating disease worldwide, particularly in fruit trees in Japan. Here we report on the biological and molecular properties of a novel bipartite double-stranded RNA (dsRNA) virus encompassing dsRNA-1 (8,931 bp) and dsRNA-2 (7,180 bp), which was isolated from a field strain of R. necatrix, W779. Besides the strictly conserved 5′ (24 nt) and 3′ (8 nt) terminal sequences, both segments show high levels of sequence similarity in the long 5′ untranslated region of approximately 1.6 kbp. dsRNA-1 and -2 each possess two open reading frames (ORFs) named ORF1 to -4. Although the protein encoded by 3′-proximal ORF2 on dsRNA-1 shows sequence identities of 22 to 32% with RNA-dependent RNA polymerases from members of the families Totiviridae and Chrysoviridae, the remaining three virus-encoded proteins lack sequence similarities with any reported mycovirus proteins. Phylogenetic analysis showed that the W779 virus belongs to a separate clade distinct from those of other known mycoviruses. Purified virions ∼50 nm in diameter consisted of dsRNA-1 and -2 and a single major capsid protein of 135 kDa, which was shown by peptide mass fingerprinting to be encoded by dsRNA-1 ORF1. We developed a transfection protocol using purified virions to show that the virus was responsible for reduction of virulence and mycelial growth in several host strains. These combined results indicate that the W779 virus is a novel bipartite dsRNA virus with potential for biological control (virocontrol), named Rosellinia necatrix megabirnavirus 1 (RnMBV1), that possibly belongs to a new virus family.


Sign in / Sign up

Export Citation Format

Share Document