peptide mass fingerprinting
Recently Published Documents


TOTAL DOCUMENTS

260
(FIVE YEARS 26)

H-INDEX

39
(FIVE YEARS 2)

2022 ◽  
Author(s):  
Takashi Akihiro ◽  
Ryou Yasui ◽  
Shinji Yasuhira ◽  
Ken-ich Matsumoto ◽  
Yasuhiro Tanaka ◽  
...  

Abstract Basket clam soup, a popular Asian dish, is prepared by boiling clams in hot water. The soup is generally cloudy and considered more delicious as cloudiness increases. However, the identity of the whitening ingredients and their relationship with taste remain unclear. In this study, we aimed to identify the components that contribute to the white color of the boiled soup. The white component was precipitated with trichloroacetic acid and reacted positively with ninhydrin, indicating the presence of proteins. The proteins were separated using sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and an intense band was observed at 33 kDa. Peptide mass fingerprinting of this band using matrix-assisted laser desorption/ionisation-time-of-flight tandem mass spectrometry revealed the protein to be tropomyosin. Basket clam tropomyosin expressed and purified from Escherichia coli turned the extracted solution white, confirming that tropomyosin contributed to the white color of clam soup.


2021 ◽  
Author(s):  
Ishida Hideki ◽  
Takshi Akihiro ◽  
Ryo Yasui ◽  
Shinji Yasuhira ◽  
Ken-ich Matsumoto ◽  
...  

Abstract Basket clam soup, a popular Asian dish, is prepared by boiling clams in hot water. The soup is generally cloudy and considered more delicious as cloudiness increases. However, the identity of the whitening ingredients and their relationship with taste remain unclear. In this study, we aimed to identify the components that contribute to the white color of the boiled soup. The white component was precipitated with trichloroacetic acid and reacted positively with ninhydrin, indicating the presence of proteins. The proteins were separated using sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and an intense band was observed at 33 kDa. Peptide mass fingerprinting of this band using matrix-assisted laser desorption/ionisation-time-of-flight tandem mass spectrometry revealed the protein to be tropomyosin. Basket clam tropomyosin expressed and purified from Escherichia coli turned the extracted solution white, confirming that tropomyosin contributed to the white color of clam soup.


Cells ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 2380
Author(s):  
Patricia Sinclair ◽  
Ancha Baranova ◽  
Nadine Kabbani

Alzheimer’s disease (AD) is marked by chronic neurodegeneration associated with the occurrence of plaques containing amyloid β (Aβ) proteins in various parts of the human brain. An increase in several Aβ fragments is well documented in patients with AD and anti-amyloid targeting is an emerging area of therapy. Soluble Aβ can bind to various cell surface and intracellular molecules with the pathogenic Aβ42 fragment leading to neurotoxicity. Here we examined the effect of Aβ42 on network adaptations in the proteome of nerve growth factor (NGF) differentiated PC12 cells using liquid-chromatography electrospray ionization mass spectrometry (LC-ESI MS/MS) proteomics. Whole-cell peptide mass fingerprinting was coupled to bioinformatic gene set enrichment analysis (GSEA) in order to identify differentially represented proteins and related gene ontology (GO) pathways within Aβ42 treated cells. Our results underscore a role for Aβ42 in disrupting proteome responses for signaling, bioenergetics, and morphology in mitochondria. These findings highlight the specific components of the mitochondrial response during Aβ42 neurotoxicity and suggest several new biomarkers for detection and surveillance of amyloid disease.


2021 ◽  
Vol 22 (11) ◽  
pp. 5857
Author(s):  
Sung Woo Kim ◽  
Bongki Kim ◽  
Jongsoo Mok ◽  
Eun Seo Kim ◽  
Joonghoon Park

8-Hydroxyguanine (8-oxoG) is the most common oxidative DNA lesion and unrepaired 8-oxoG is associated with DNA fragmentation in sperm. However, the molecular effects of 8-oxoG on spermatogenesis are not entirely understood. Here, we identified one infertile bull (C14) due to asthenoteratozoospermia. We compared the global concentration of 8-oxoG by reverse-phase liquid chromatography/mass spectrometry (RP-LC/MS), the genomic distribution of 8-oxoG by next-generation sequencing (OG-seq), and the expression of sperm proteins by 2-dimensional polyacrylamide gel electrophoresis followed by peptide mass fingerprinting (2D-PAGE/PMF) in the sperm of C14 with those of a fertile bull (C13). We found that the average levels of 8-oxoG in C13 and C14 sperm were 0.027% and 0.044% of the total dG and it was significantly greater in infertile sperm DNA (p = 0.0028). Over 81% of the 8-oxoG loci were distributed around the transcription start site (TSS) and 165 genes harboring 8-oxoG were exclusive to infertile sperm. Functional enrichment and network analysis revealed that the Golgi apparatus was significantly enriched with the products from 8-oxoG genes of infertile sperm (q = 2.2 × 10-7). Proteomic analysis verified that acrosome-related proteins, including acrosin-binding protein (ACRBP), were downregulated in infertile sperm. These preliminary results suggest that 8-oxoG formation during spermatogenesis dysregulated the acrosome-related gene network, causing structural and functional defects of sperm and leading to infertility.


PLoS ONE ◽  
2021 ◽  
Vol 16 (5) ◽  
pp. e0251061
Author(s):  
Anneke Janzen ◽  
Kristine Korzow Richter ◽  
Ogeto Mwebi ◽  
Samantha Brown ◽  
Veronicah Onduso ◽  
...  

Assessing past foodways, subsistence strategies, and environments depends on the accurate identification of animals in the archaeological record. The high rates of fragmentation and often poor preservation of animal bones at many archaeological sites across sub-Saharan Africa have rendered archaeofaunal specimens unidentifiable beyond broad categories, such as “large mammal” or “medium bovid”. Identification of archaeofaunal specimens through Zooarchaeology by Mass Spectrometry (ZooMS), or peptide mass fingerprinting of bone collagen, offers an avenue for identification of morphologically ambiguous or unidentifiable bone fragments from such assemblages. However, application of ZooMS analysis has been hindered by a lack of complete reference peptide markers for African taxa, particularly bovids. Here we present the complete set of confirmed ZooMS peptide markers for members of all African bovid tribes. We also identify two novel peptide markers that can be used to further distinguish between bovid groups. We demonstrate that nearly all African bovid subfamilies are distinguishable using ZooMS methods, and some differences exist between tribes or sub-tribes, as is the case for Bovina (cattle) vs. Bubalina (African buffalo) within the subfamily Bovinae. We use ZooMS analysis to identify specimens from extremely fragmented faunal assemblages from six Late Holocene archaeological sites in Zambia. ZooMS-based identifications reveal greater taxonomic richness than analyses based solely on morphology, and these new identifications illuminate Iron Age subsistence economies c. 2200–500 cal BP. While the Iron Age in Zambia is associated with the transition from hunting and foraging to the development of farming and herding, our results demonstrate the continued reliance on wild bovids among Iron Age communities in central and southwestern Zambia Iron Age and herding focused primarily on cattle. We also outline further potential applications of ZooMS in African archaeology.


2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Sean Paul Doherty ◽  
Stuart Henderson ◽  
Sarah Fiddyment ◽  
Jonathan Finch ◽  
Matthew J. Collins

AbstractHistoric legal deeds are one of the most abundant resources in British archives, but also one of the most neglected. Despite the millions that survive, we know remarkably little about their manufacture, including the species of animal on which they were written. Here we present the species identification of 645 sixteenth–twentieth century skins via peptide mass fingerprinting (ZooMS), demonstrating the preferential use of sheepskin parchment. We argue that alongside their abundance and low cost, the use of sheepskins over those of other species was motivated by the increased visibility of fraudulent text erasure and modification afforded by the unique structure of their skin.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ashley N. Coutu ◽  
Alberto J. Taurozzi ◽  
Meaghan Mackie ◽  
Theis Zetner Trolle Jensen ◽  
Matthew J. Collins ◽  
...  

AbstractWe used palaeoproteomics and peptide mass fingerprinting to obtain secure species identifications of key specimens of early domesticated fauna from South Africa, dating to ca. 2000 BP. It can be difficult to distinguish fragmentary remains of early domesticates (sheep) from similar-sized local wild bovids (grey duiker, grey rhebok, springbok—southern Africa lacks wild sheep) based on morphology alone. Our analysis revealed a Zooarchaeology by Mass Spectrometry (ZooMS) marker (m/z 1532) present in wild bovids and we demonstrate through LC–MS/MS that it is capable of discriminating between wild bovids and caprine domesticates. We confirm that the Spoegrivier specimen dated to 2105 ± 65 BP is indeed a sheep. This is the earliest directly dated evidence of domesticated animals in southern Africa. As well as the traditional method of analysing bone fragments, we show the utility of minimally destructive sampling methods such as PVC eraser and polishing films for successful ZooMS identification. We also show that collagen extracted more than 25 years ago for the purpose of radiocarbon dating can yield successful ZooMS identification. Our study demonstrates the importance of developing appropriate regional frameworks of comparison for future research using ZooMS as a method of biomolecular species identification.


2021 ◽  
Author(s):  
Ahmad Amini ◽  
Torgny Rundlöf ◽  
Henrik Lodén ◽  
Johan A. Carlsson ◽  
Martin Lavén ◽  
...  

An analytical strategy based on matrix-assisted laser desorption/ionization (MALDI) time-of-flight (TOF) mass spectrometry (MS) for identification of peptides and proteins in illegally distributed products is presented. The identified compounds include human growth hormone (hGH), human somatoliberin, anti-obesity drug (AOD), growth hormone releasing peptides (GHRP-2 and GHRP-6), Glycine-GHRP-2 and Glycine-GHRP-6, ipamorelin, insulin aspart and porcine, delta sleep-inducing peptide (DSIP), thymosin β4, insulin like growth factor (IGF), mechano growth factor (MGF), human chorionic gonadotropin (hCG), melanotan II, bremelanotide, dermorphin and body protecting compound (BPC 157). The identification of proteins was mainly based on peptide mass fingerprinting, i.e., bottom up approach, while the smaller peptides were identified through de-novo sequencing. In cases when a reference standard was available, complementary identification was performed by capillary electrophoresis in double-injection mode (DICE), where a suspicious product was compared with the reference standard through two consecutive injections within the same electrophoretic run.


Sign in / Sign up

Export Citation Format

Share Document