scholarly journals First Report of Pectobacterium carotovorum subsp. brasiliense Causing Soft Rot on Potato and Other Vegetables in Poland

Plant Disease ◽  
2015 ◽  
Vol 99 (9) ◽  
pp. 1271-1271 ◽  
Author(s):  
M. Waleron ◽  
K. Waleron ◽  
E. Lojkowska
Plant Disease ◽  
2019 ◽  
Vol 103 (10) ◽  
pp. 2667-2667 ◽  
Author(s):  
N. Zlatković ◽  
A. Prokić ◽  
K. Gašić ◽  
N. Kuzmanović ◽  
M. Ivanović ◽  
...  

Plant Disease ◽  
2017 ◽  
Vol 101 (2) ◽  
pp. 379 ◽  
Author(s):  
A. J. G. Moraes ◽  
E. B. Souza ◽  
R. L. R. Mariano ◽  
A. M. F. Silva ◽  
N. B. Lima ◽  
...  

Plant Disease ◽  
2019 ◽  
Vol 103 (9) ◽  
pp. 2468-2468 ◽  
Author(s):  
S. B. Jiang ◽  
B. R. Lin ◽  
Q. Y. Yang ◽  
J. X. Zhang ◽  
H. F. Shen ◽  
...  

Plant Disease ◽  
2014 ◽  
Vol 98 (7) ◽  
pp. 989-989 ◽  
Author(s):  
W. Cheon ◽  
Y. H. Jeon

Orostachys japonica (Maxim) A. Berger is an important traditional medicine in Korea. The extract of this plant has antioxidant activity and suppresses cancer cell proliferation (1). From summer through fall of 2012 and 2013, a high incidence (~10% to 30%) of disease outbreaks of all plants characterized by water-soaked lesions and soft rot with a stinky odor was observed in cultivated O. japonica around Uljin (36°59′35.04″N, 126°24′1.51″E), Korea. Water-soaked lesions were first observed on the stem base of plants. Subsequently, the plants collapsed, although the upper portion remained asymptomatic. Thereafter, the lesions expanded rapidly over the entire plant. To isolate potential pathogens from infected leaves, small sections (5 to 10 mm2) were excised from the margins of lesions. Ten bacteria were isolated from ten symptomatic plants. Three representative isolates from different symptomatic plants were used for identification and pathogenicity tests. Isolated bacteria were gram negative, pectolytic on crystal violet pectate agar, nonfluorescent on King's medium B, and elicited a hypersensitive response in tobacco plants. All isolates caused soft rot of potato tubers. These isolates also differed from isolates of Erwinia chrysanthemi (Ech) that they were insensitive to erythromycin and did not produce phosphatase. These isolates differed from known strains of E. carotovora subsp. atroseptica in that they did not produce reducing substances from sucrose (2). Use of the Biolog GN microplate and the Release 4.0 system identified the isolate as Pectobacterium carotovorum subsp. carotovorum with 81.2% similarity. The 16S rRNA of the isolated bacteria was amplified by PCR and sequenced as described by Weisburg et al. (3). A BLAST analysis for sequence similarity of the 16S rRNA region revealed 99% similarity with nucleotide sequences for P. carotovorum subsp. carotovorum isolates (KC790305, KC790280, JF926758, JX196705, and AB680074). The pathogenicity of three bacterial isolates was examined on three 2-year-old O. japonica plants by adding 50 μl of a bacterial suspension containing 108 CFU/ml when wounding the leaves with sterile needles. Ten control plants were inoculated with sterilized water. After inoculation, plants were maintained in a growth chamber at 25°C with relative humidity ranging from 80 to 90%. After 2 to 3 days, tissue discoloration, water-soaked lesions, and soft rot developed around the inoculation point. Severe symptoms of soft rot and darkening developed on leaves of inoculated plants within 3 to 5 days after inoculation. All controls remained healthy during these experiments. The bacterial strains re-isolated from the parts of the leaf showing the symptoms and identified as P. carotovorum subsp. carotovorum on the basis of the biochemical and physiological tests, as well as Biolog system. The results obtained for pathogenicity, Biolog analysis, and molecular data corresponded with those for P. carotovorum subsp. carotovorum. To our knowledge, this is the first report of the presence of P. carotovorum on O. japonica in Korea. References: (1) C.-H. Kim et al. Kor. J. Med. Crop Sci. 11:31, 2003. (2) N. W. Schaad et al. Erwinia Soft Rot Group. Page 56 in: Laboratory Guide for Identification of Plant Pathogenic Bacteria. 3rd ed. N. W. Schaad et al. eds. American Phytopathological Society, St. Paul. MN, 2001. (3) W. G. Weisburg et al. J. Bacteriol. 173:697, 1991.


Plant Disease ◽  
2012 ◽  
Vol 96 (12) ◽  
pp. 1819-1819 ◽  
Author(s):  
J. X. Zhang ◽  
B. R. Lin ◽  
H. F. Shen ◽  
X. M. Pu ◽  
Z. N. Chen ◽  
...  

Potato (Solanum tuberosum L.) is a major crop in China, with 80.0 million tons being produced in 2010 on 3.3 million ha. Pectobacterium carotovorum subsp. carotovorum Jones 1901; Hauben et al. 1999 causes soft rot worldwide on a wide range of hosts including potato, carrot, and cabbage. During spring 2010, a soft rot with a foul smell was noted in stored potato tubers of different cultivars in the Guangdong Province. Symptoms on tubers appeared as tan, water-soaked areas with watery ooze. The rotted tissues were white to cream colored. Stems of infected plants with typical inky black symptoms could also be found in the fields prior to harvest. Three different potato fields were surveyed, and 13% of the plants had the symptoms. Twenty-seven samples (three symptomatic tubers per sample) were collected. Bacteria were successfully isolated from all diseased tissues on nutrient agar media supplemented with 5% sucrose and incubated at 26 ± 1°C for 36 h. After purification on tripticase soy agar media, four typical strains (7-3-1, 7-3-2, 8-3-1, and 8-3-2) were identified using the following deterministic tests: gram-negative rods, oxidase negative, facultatively anaerobic, able to degrade pectate, sensitive to erythromycin, negative for phosphatase, unable to produce acid from α-methyl-glucoside, and produced acid from trehalose. Biolog analysis (Ver 4.20.05, Hayward, CA) identified the strains as P. carotovorum subsp. carotovorum (SIM 0.808, 0.774, 0.782, and 0.786, respectively). The identity of strains 7-3-1 (GenBank Accession No. JX258132), 7-3-2 (JX258133), and 8-3-1 (JX196705) was confirmed by 16S rRNA gene sequencing (4), since they had 99% sequence identity with other P. carotovorum subsp. carotovorum strains (GenBank Accession Nos. JF926744 and JF926758) using BLASTn. Further genetic analysis of strain 8-3-1 was performed targeting informative housekeeping genes, i.e., acnA (GenBank Accession No. JX196704), gabA (JX196706), icdA (JX196707), mdh (JX196708), mtlD (JX196709), pgi (JX196710), and proA (JX196711) (2). These sequences from strain 8-3-1 were 99 to 100%, homologous to sequences of multiple strains of P. carotovorum subsp. carotovorum. Therefore, strain 8-3-1 grouped with P. carotovorum subsp. carotovorum on the phylogenetic trees (neighbor-joining method, 1,000 bootstrap values) of seven concatenated housekeeping genes when compared with 60 other strains, including Pectobacterium spp. and Dickeya spp. (3). Pathogenicity of four strains (7-3-1, 7-3-2, 8-3-1, and 8-3-2) was evaluated by depositing a bacterial suspension (106 CFU/ml) on the potato slices of cultivar ‘Favorita’ and incubating at 30 ± 1°C. Slices inoculated with just water served as non-inoculated checks. The strains caused soft rot within 72 h and the checks had no rot. Bacteria were reisolated from the slices and were shown to be identical to the original strains based on morphological, cultural, and biochemical tests. Although this pathogen has already been reported in northern China (1), to our knowledge, this is the first report of P. carotovorum subsp. carotovorum causing bacterial soft rot of potato in Guangdong Province of China. References: (1) Y. X. Fei et al. J. Hexi Univ. 26:51, 2010.(2) B. Ma et al. Phytobacteriology 97:1150, 2007. (3) S. Nabhan et al. Plant Pathol. 61:498, 2012. (4) W. G. Weisbury et al. J. Bacteriol. 173:697, 1991.


Plant Disease ◽  
2019 ◽  
Vol 103 (3) ◽  
pp. 398-403 ◽  
Author(s):  
Dimas Mejía-Sánchez ◽  
Sergio Aranda-Ocampo ◽  
Cristian Nava-Díaz ◽  
Daniel Teliz-Ortiz ◽  
Manuel Livera-Muñoz ◽  
...  

Neobuxbaumia tetetzo (Coulter) Backeberg (tetecho) is a columnar cactus endemic to Mexico. Tetecho plants, flowers, fruits, and seeds play an important role in the semiarid ecosystem, as they serve as a refuge and food for insects, bats, and birds, and are widely used by ethnic groups since pre-Hispanic times. Tetecho is affected by a soft rot that damages the whole plant and causes its fall and disintegration. Eight bacterial colonies of similar morphology were isolated from plants showing soft rot and inoculated in healthy tetecho plants, reproducing typical symptoms of soft rot 9 days after inoculation. Ten representative isolates were selected for phenotypic and genetic identification using 16s rDNA, IGS 16S-23S rDNA, and rpoS genes and for pathogenicity tests on several members of the cactus family and other plants. Based on the results, these bacterial isolates were identified as Pectobacterium carotovorum subsp. brasiliense. Inoculation of this bacteria caused soft rot in different cacti, fruits, leaves, and roots of other plants. This is the first report of the subspecies brasiliense of P. carotovorum causing soft rot and death in cacti in the world and the first report of this subspecies in Mexico.


Plant Disease ◽  
2014 ◽  
Vol 98 (8) ◽  
pp. 1152-1152 ◽  
Author(s):  
J. Gao ◽  
N. Nan ◽  
B. H. Lu ◽  
Y. N. Liu ◽  
X. Y. Wu ◽  
...  

Milk thistle (Silybum marianum) is an annual or biannual plant of the Asteraceae family that produces the hepaprotectant silymarin. In 2012, almost all milk thistle grown in the medicinal herbal garden of Jilin Agricultural University (Changchun, Jilin Province, China) exhibited symptoms of a previously undetected soft rot disease. Initial symptoms on stems appeared as tan, semitransparent, and water-soaked, then became sunken. The rotted lesions expanded rapidly and inner stem tissues were rotten with a foul smell. Eventually, the whole plant became black, then collapsed and died. Economic losses were significant as the seed crop was almost completely lost. Nine bacterial strains were isolated from tissues on nutrient agar (NA) medium after 36 h incubation at 28°C (1). Colonies of the nine strains were round, shiny, grayish white, and convex on NA medium. All strains were gram-negative, non-fluorescent, facultatively anaerobic, motile with two to four peritrichous flagella (observed by electron transmission microscope), positive for catalase and potato rot, but negative for oxidase and lecithinase. Strains grew at 37°C and in yeast salts broth medium containing 5% NaCl. They also liquefied gelatin. Strains were also negative for starch hydrolysis, malonate utilization, gas production from glucose, and indole. Results were variable for the Voges-Proskauer test and production of H2S from cysteine. The strains utilized esculin, fructose, D-galactose, D-glucose, inositol, lactose, D-mannose, D-mannitol, melibiose, rhamnose, salicin, trehalose, D-xylose, and cellobiose as carbon sources, but not melezitose, α-CH3-D-gluconate, sorbitol, or starch. Glycerol and maltose were only weakly utilized. Species identity was confirmed by molecular analysis of one of the strains, SMG-2. HPLC indicated a DNA GC content of 50.55%. The 16S rDNA sequence (KC207898) of SMG-2 showed 99% sequence identity to that of a Pectobacterium carotovorum subsp. carotovorum strain (DQ333384) and the sequence of the 16S-23S rDNA spacer region (KJ415377) was 95% similar to that of another known strain of P. carotovorum subsp. carotovorum (AF232684). Based on biochemical and physiological characteristics (2), as well as 16S rDNA gene analysis, the strains were identified as P. carotovorum subsp. carotovorum. Pathogenicity of the nine strains was evaluated by depositing a bacterial suspension (108 CFU/ml) on wounded stems (made with a disinfected razor blade) of 3-month-old milk thistle plants. Three plants were inoculated with each strain and three plants were treated with sterilized water as negative controls. Inoculated plants were covered with plastic bags for 24 h in a greenhouse at 28 to 30°C. After 48 h, the plants inoculated with bacteria showed similar symptoms as the naturally infected plants, while control plants remained symptomless. The symptoms observed on inoculated stems were rotten and sunken tissues. Bacteria were re-isolated from the inoculated plants and confirmed to be identical to the original strains based on 16S rDNA sequence analysis. To our knowledge, this is the first report of P. carotovorum subsp. carotovorum causing bacterial soft rot of milk thistle in Changchun, Jilin Province, China. References: (1) Z. D. Fang. Research Method of Phytopathology. China Agricultural Press (In Chinese), 1998. (2) N. W. Schaad et al., eds. Laboratory Guide for Identification of Plant Pathogenic Bacteria, 3rd ed. American Phytopathological Society, St. Paul, MN, 2001.


Plant Disease ◽  
2022 ◽  
Author(s):  
Utpal Handique ◽  
Yaning Cao ◽  
Dekang Wang ◽  
Ruofang Zhang ◽  
Wensi Li ◽  
...  

Pectobacterium spp. and Dickeya spp. cause blackleg and soft rot on potato worldwide (Charkowski, 2018). Potato plants (cv. Favorita or Jizhang 8#) with blackleg symptoms (vascular browning of crown stems, Fig. S1) were observed in the field in Zhangjiakou, Hebei province in 2018, and in Ningde, Fujian Province in 2019, in China. The disease incidence was around 50% and 10% in Zhangjiakou (5 ha) and Ningde (4 ha), respectively. Diseased plants (3 from each site) were collected to isolate the pathogen. Blackleg symptomatic stems were soaked in 75% ethanol for 2 min, rinsed and ground in sterile distilled water. Serial tenfold dilutions of the above solution were plated onto the crystal violet pectate agar (CVP) plate (Ge et al., 2018). Two to 3 days after incubation at 28°C, 4 bacterial colonies in total which digested pectin from the media and developed pit on CVP plates were purified and sequenced for identification using the universal 16S rRNA gene primer set 27F/1492R (Monciardini et al., 2002). Two colony sequences that showed more than 99% sequence identity to Pectobacterium punjabense type strain SS95 (MH249622) were submitted to the GenBank ( accession numbers: OK510280, MT242589). Additionally, six housekeeping genes proA (OK546205, OK546199), gyrA (OK546206, OK546200), icdA (OK546207, OK546201), mdh (OK546208, OK546202), gapA (OK546209, OK546203), and rpoS (OK546210, OK546204) of these two isolates were amplified and sequenced (Ma et al., 2007, Waleron et al., 2008). All strains show 99% to 100% identity with MH249622T . Phylogenetic trees based on 16S rRNA gene sequences (Fig. S2) and concatenated sequences of the housekeeping genes (Fig. S3) of the 2 isolates were constructed using MEGA 6.0 software (Tamura et al., 2013). Koch’s postulate was performed on potato seedlings and potato tubers (cv. Favorita) by injecting 100 μl bacterial suspension (105 CFU/ml) or sterile phosphate-buffered solution into the crown area of the stems or the tubers and kept at 100% humidity and 21°C for 1 day. Four days after inoculation, the infected area of the inoculated seedlings rotten and turned black, while the controls were symptomless (Fig. S4). Two days after inoculation, the infected tubers rotten and turned black, while the controls were symptomless (Fig. S4). Bacterial colonies were reisolated from these symptomatic tissues and identified using the same methods described above. Blackleg on potato plants or soft rot on potato has been reported to be caused by Pectobacterium atrosepticum, Pectobacterium carotovorum subsp. carotovorum, Pectobacterium carotovorum subsp. brasiliense, Pectobacterium parmentieri, Pectobacterium polaris in China (Zhao et al., 2018; Cao et al., 2021; Wang et al., 2021). To our knowledge, this is the first report of blackleg/soft rot of potato caused by Pectobacterium punjabense in China. We believe that this report will draw attention to the management of this pathogen in China.


Plant Disease ◽  
2015 ◽  
Vol 99 (8) ◽  
pp. 1175 ◽  
Author(s):  
Y. Tian ◽  
Y. Zhao ◽  
H. Xie ◽  
X. Wang ◽  
J. Fan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document