scholarly journals Pharmacological Characteristics and Control Efficacy of a Novel SDHI Fungicide Pydiflumetofen Against Sclerotinia sclerotiorum

Plant Disease ◽  
2019 ◽  
Vol 103 (1) ◽  
pp. 77-82 ◽  
Author(s):  
Yabing Duan ◽  
Qian Xiu ◽  
Haoran Li ◽  
Tao Li ◽  
Jianxin Wang ◽  
...  

Pydiflumetofen is a novel succinate dehydrogenase inhibitor fungicide. In the current research, we determined the sensitivity of 166 Sclerotinia sclerotiorum strains to pydiflumetofen using mycelial growth inhibition method. The results suggest that pydiflumetofen exhibited a strong inhibitory activity against S. sclerotiorum and the EC50 values ranged from 0.0058 to 0.0953 μg ml−1, with a mean EC50 value of 0.0250 μg ml−1. However, the baseline sensitivity was not normally distributed because of a high variation factor. After treatment with pydiflumetofen, cell membrane permeability increases, but exopolysaccharide and oxalic acid production decreases, which contributes to reduced virulence of S. sclerotiorum and leads to failure of disease infection. In addition, protective and curative activity was performed on detached oilseed rape leaves by artificial inoculation. Pydiflumetofen exhibited excellent protective and curative effects against S. sclerotiorum on oilseed rape, and the protective effect was better than the curative effect. Further, field trials were conducted to evaluate the potential of pydiflumetofen in controlling Sclerotinia stem rot (SSR) caused by S. sclerotiorum on oilseed rape. Compared with the currently used fungicides, pydiflumetofen not only exhibited excellent control efficacy against SSR, but also dramatically reduced the dosage of fungicides in the field. Thus, this study provides important references for revealing pharmacological mechanism of pydiflumetofen against S. sclerotiorum and managing SSR on oilseed rape caused by benzimidazole- and dicarboximide-resistant populations.

Agronomy ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1758
Author(s):  
Nazanin Zamani-Noor

Sclerotinia stem rot (SSR), caused by Sclerotinia sclerotiorum, is a devastating disease of oilseed rape that may cause significant yield losses if not controlled by cultural management strategies and fungicide applications. Studies were conducted to evaluate the efficacy of different group of fungicides as well as a biopesticide, including azoxystrobin, boscalid, fludioxonil, prothioconazole, tebuconazole, azoxystrobin/tebuconazole, boscalid/pyraclostrobin, prothioconazole/fluopyram and Bacillus amyloliquefaciens, on baseline sensitivity of S. sclerotiorum isolates under in-vitro conditions as well as control of SSR in the field. Artificial inoculation and mist irrigation prompt to reproducible SSR infection in oilseed rape cultivation. All compounds significantly reduced 36.7% to 86.9% SSR severity and increased 55.2% to 98.7% yield, 1.5% to 7.0% thousand grain-weight, 1.5% to 5.9% oil and 0.1% to 1.3% protein content. Fludioxonil, boscalid/pyraclostrobin and fluopyram/prothioconazole achieved strongest fungicidal activity against SSR. The biopesticide provided 36% of disease control. Under in vitro conditions, B. amyloliquefaciens not only strongly inhibited mycelial growth but also the formation of sclerotia in all concentrations. Boscalid and fludioxonil exhibited the highest level of fungicidal activity against S. sclerotiorum, with mean EC50 values of 1.23 and 1.60 μg a.s. mL−1. The highest variability of EC50 values between isolates was observed towards prothioconazole and azoxystrobin.


2018 ◽  
Vol 114 ◽  
pp. 208-214 ◽  
Author(s):  
Jun Zhang ◽  
Simin Hu ◽  
Qianru Xu ◽  
Hong You ◽  
Fuxing Zhu

2014 ◽  
Vol 141 (2) ◽  
pp. 237-246 ◽  
Author(s):  
Jin-Li Li ◽  
Xiang-Yang Liu ◽  
Ya-Li Di ◽  
Hong-Jie Liang ◽  
Fu-Xing Zhu

2015 ◽  
Vol 142 (4) ◽  
pp. 691-699 ◽  
Author(s):  
Hong-Jie Liang ◽  
Ya-Li Di ◽  
Jin-Li Li ◽  
Fu-Xing Zhu

Plant Disease ◽  
2021 ◽  
Author(s):  
Yang Bai ◽  
Chun-Yan Gu ◽  
Rui Pan ◽  
Muhammad Abid ◽  
Hao-Yu Zang ◽  
...  

New fungicides are tools to manage fungal diseases and overcome emerging resistance in fugnal pathogens. In this study, a total of 121 isolates of Fusarium fujikuroi, the causal agent of rice bakanae disease (RBD), were collected from various geographical regions of China, and their sensitivity to a novel succinate dehydrogenase inhibitor (SDHI)fungicide ‘pydiflumetofen’ was evaluated. The 50% effective concentration (EC50) value of pydiflumetofen for mycelial growth suppression ranged from 0.0101 to 0.1012 μg/ml and for conidial germination inhibition ranged from 0.0051to 0.1082 μg/ml. Pydiflumetofen treated hyphae showed contortion and increased branching, cell membrane permeability, and glycerol content significantly. The result of electron microscope transmission indicated that pydiflumetofen damaged the mycelial cell wall and the cell membrane, and almost broken up the cells, which increased the intracellular plasma leakage. There was no cross-resistance between pydiflumetofen and the widely used fungicides such as carbendazim, prochloraz, and phenamacril. Pydiflumetofen was found safe to seeds and rice seedlings of four rice cultivars, used up to 400 μg/ml. Seed treatment significantly decreased the rate of diseased plants in the greenhouse as well as in field trials in 2017 and 2018. Pydiflumetofen showed superb results against RBD, when used at 10 or 20 g a.i./100 kg of treated seeds, providing over 90% control efficacy (the highest control efficacy was up to 97%), which was significantly higher than that of 25% phenamacril (SC) at 10g or carbendazim at 100 g. Pydiflumetofen is highly effective against F. fujikuroi growth and sporulation as well as RBD in the field.


Plant Disease ◽  
2021 ◽  
Author(s):  
Xue Yang ◽  
Chun-Yan Gu ◽  
Yang Bai ◽  
Jia-Zhi Sun ◽  
Hao-Yu Zang ◽  
...  

Pomegranate crown rot caused by Coniellagranati is one of the most severe diseases of pomegranate. To date, no fungicides have been registered for controlling this disease in China. Pyraclostrobin, belonging to strobilurin fungicides, has a broad spectrum of activity against many phytopathogens. In this study, based on the mycelial growth and conidial germination inhibition methods, we investigated the biological activity of pyraclostrobin against C. granati at the presence of 50 μg/mL SHAM using 80 isolates collected from different orchards in China during 2012-2018. The EC50 (50% effective concentration) values ranged from 0.040-0.613 μg/mL for mycelial growth and 0.013-0.110 μg/mL for conidium germination, respectively. Treated with pyraclostrobin, the hyphae morphology changed and conidial production of C. granati decreased significantly. The result of transmission electron microscope showed that treatment of pyraclostrobin could make the cell wall thinner, and lead to ruptured cell membrane and formation of intracellular organelle autophagosomes. The pyraclostrobin showed good protective and curative activities against C. granati on detached pomegranate fruits. In field trials, pyraclostrobin showed excellent control efficacy against this disease in which the treatment of 25% pyraclostrobin EC 1000× provided 92.25% and 92.58% control efficacy in 2019 and 2020, respectively, significantly higher than that of other treatments. Therefore, pyraclostrobin could be a candidate fungicide for the control of pomegranate crown rot.


Plant Disease ◽  
2019 ◽  
Vol 103 (7) ◽  
pp. 1613-1620 ◽  
Author(s):  
Xue-ping Huang ◽  
Jian Luo ◽  
Yu-fei Song ◽  
Bei-xing Li ◽  
Wei Mu ◽  
...  

Sclerotinia sclerotiorum, which can cause Sclerotinia stem rot, is a prevalent plant pathogen. This study aims to evaluate the application potential of benzovindiflupyr, a new generation of succinate dehydrogenase inhibitor (SDHI), against S. sclerotiorum. In our study, 181 isolates collected from different crops (including eggplant [n = 34], cucumber [n = 27], tomato [n = 29], pepper [n = 35], pumpkin [n = 32], and kidney bean [n = 25]) in China were used to establish baseline sensitivity to benzovindiflupyr. The frequency distribution of the 50% effective concentration (EC50) values of benzovindiflupyr was a unimodal curve, with mean EC50 values of 0.0260 ± 0.011 μg/ml, and no significant differences in mean EC50 existed among the various crops (P > 0.99). Benzovindiflupyr can effectively inhibit mycelial growth, sclerotial production, sclerotial shape, and myceliogenic and carpogenic germination of the sclerotia of S. sclerotiorum. In addition, benzovindiflupyr showed good systemic translocation in eggplant. Using benzovindiflupyr at 100 μg/ml yielded efficacies of 71.3 and 80.5% for transverse activity and cross-layer activity, respectively, which were higher than those of acropetal and basipetal treatments (43.6 and 44.7%, respectively). Greenhouse experiments were then carried out at two experimental sites for verification. Applying benzovindiflupyr at 200 g a.i. ha−1 significantly reduced the disease incidence and severity of Sclerotinia stem rot. Overall, the results demonstrated that benzovindiflupyr is a potential alternative product to control Sclerotinia stem rot.


Plant Disease ◽  
2015 ◽  
Vol 99 (7) ◽  
pp. 969-975 ◽  
Author(s):  
Congying Xu ◽  
Xiaoyu Liang ◽  
Yiping Hou ◽  
Mingguo Zhou

We determined the effects and efficacy of benzothiostrobin, a new strobilurin-derived fungicide, against the plant-pathogenic fungus Sclerotinia sclerotiorum (the causal agent of Sclerotinia stem rot). Mycelial growth and sclerotial germination in vitro were strongly inhibited by benzothiostrobin in the presence of salicylhydroxamic acid. On detached rapeseed leaves, benzothiostrobin at 40 μg/ml reduced lesion development by 87%. No cross-resistance was detected between benzothiostrobin and carbendazim, iprodione, fludioxonil, or boscalid. A formulated mixture of benzothiostrobin and fluazinam at 1:1 had synergistic activity against S. sclerotiorum in vitro. In field trials, benzothiostrobin alone or formulated with fluazinam at 1:1 (150 g a.i. ha−1) was significantly (P < 0.05) superior to iprodione in controlling Sclerotinia stem rot of rapeseed. These results suggest that benzothiostrobin has substantial potential for the control of Sclerotinia stem rot.


Sign in / Sign up

Export Citation Format

Share Document